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Abstract

Many collective classification (CC) algorithms have been shown to increase accuracy when in-
stances are interrelated. However, CC algorithms must be carefully applied because their use of
estimated labels can in some cases decrease accuracy. In this article, we show that managing this
label uncertainty througbautiousalgorithmic behavior is essential to achieving maximal, robust
performance. First, we descriloautious inferencand explain how four well-known families of

CC algorithms can be parameterized to use varying degrees of such caution. Second, we introduce
cautious learningand show how it can be used to improve the performance of almost any CC al-
gorithm, with or without cautious inference. We then evaluate cautious inference and learning for
the four collective inference families, with three local classifiers and a range of both synthetic and
real-world data. We find that cautious learning and cautious inference typically outperform less
cautious approaches. In addition, we identify the data characteristics that predict more substantial
performance differences. Our results reveal thatdegree of caution used usually has a larger im-

pact on performance than the choice of the underlying inference algorithm. Together, these results
identify the most appropriate CC algorithms to use for particular task characteristics and explain
multiple conflicting findings from prior CC research.

Keywords: collective inference, statistical relational learning, approximate probabilistic infer-
ence, networked data, cautious inference

1. Introduction

Traditional methods for supervised learning assume that the instances to be classified are indepen-
dent of each other. However, in many classification tasks, instances can be related. For example,
hyperlinked web pages are more likely to have the same class label than unlinked pages. Such
autocorrelation (correlation of class labels among interrelated instances) exists in a wide variety

of data (Neville and Jensen, 2007; Macskassy and Provost, 2007), including situations where the

relationships are implicit (e.g., email messages between two people are likely to share topics).
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McDOWELL, GUPTA AND AHA

Collective classification (CC) is a method for jointly classifying related instances. To do so,
CC methods employ eollective inferencalgorithm that exploits dependencies between instances
(e.g., autocorrelation), enabling CC to often attain higher accuracies than traditional methods when
instances are interrelated (Neville and Jensen, 2000; Taskar et al., 2002; Jensen et al., 2004; Sen
et al., 2008). Several algorithms have been used for collective inference, including relaxation label-
ing (Chakrabarti et al., 1998), the iterative classification algoritf@A] (Lu and Getoor, 2003a),
loopy belief propagation (LBP) (Taskar et al., 2002), Gibbs sampling (Gibbs) (Jensen et al., 2004),
and variants of the weighted-vote relational neighbor algoritmvRN (Macskassy and Provost,
2007).

During testing, all collective inference algorithms exploit relational features based on uncertain
estimation of class labels. This test-time label uncertainty can diminish accuracy due to two related
effects. First, an incorrectly predicted label during testing may negatively influence the predictions
of its linked neighbors, possibly leading to cascading inference errors (cf., Neville and Jensen,
2008). Second, the training process may learn a poor model for test-time inference, because of the
disparity between the training scenario (where labels are known and certain) and the test scenario
(where labels are estimated and hence possibly incorrect). As a result, while CC has many potential
advantages, in some cases CC's label uncertainty may actually cause accuracy to decrease compared
to non-relational approaches (Neville and Jensen, 2007; Sen and Getoor, 2006; Sen et al., 2008).

In this article, we argue that managing this test-time label uncertainty through “cautious” al-
gorithmic behavior is essential to achieving maximal, robust performance. We describe two com-
plementary cautious strategies. Each addresses the fundamental problem of label uncertainty, but
separately targets the two manifestations of the problem described above.c&itsbus infer-
enceis an inference process that attends to the uncertainty of its intermediate label predictions.
For example, existing algorithms such@ibbsor LBP accomplish cautious inference by sampling
from or directly reasoning with the estimated label distributions. These techniques are cautious
because they prevent less certain label estimates from having substantial influence on subsequent
estimations. Alternatively, we show how variants of a simpler algoritl@A, can perform cautious
inference by appropriately favoring more certain information. Secceuatjous learningefers to a
training process that ameliorates the aforementioned train/test disparity. In particular, we introduce
PLUL (Parameter Learning for Uncertain Labels), which uses standard cross-validation techniques,
but in a way that is new for CC and that leads to significant performance advantages. In particu-
lar, PLUL is cautious because it prevents the algorithm from learning a model from the (correctly
labeled) training set that overestimates how useful relational features will be when computed with
uncertain labels from the test set.

We consider four frequently-studied families of CC algorithiA, Gibbs,LBP, andwvRN
For each family, we describe algorithms that use varying degrees of cautious inference and explain
how they all (except for the relational-onlyvRN can also exploit cautious learning via PLUL.

We then evaluate the variants of these four families, with and without PLUL, over a wide range of
synthetic and real-world data sets. To broaden the evidence for our results, we evaluate three local
classifiers that are used by some of the CC algorithms, and also compare against a non-relational
baseline.

While recent CC studies describe complementary results and make some related comparisons,
they omit important variations that we consider here (see Section 3). Moreover, the scope and/or
methodology of previous studies leaves several important questions unanswered. For instance,
Gibbsis often regarded as one of the most accurate inference algorithms, and has been shown
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CAUTIOUS COLLECTIVE CLASSIFICATION

to work well for CC (Jensen et al., 2004; Neville and Jensen, 2007). If so, why did Sen et al.
(2008) find no significant difference betwe@&ibbsand the much less sophisticatéziA? Second,
we earlier reported thaCA¢ (a cautious variant diCA) outperforms botiGibbsandICA on three
real-world data sets (McDowell et al., 2007a). Why wol@h: outperformGibbs, and for what
data characteristics al€Ac’s gains significant? We answer these questions and more in Section 8.

We hypothesize thatautious CC algorithms will outperform more aggressive CC approaches
when there exists a high probability of an “incorrect relational inference”, which we define as a pre-
diction error that is due to reasoning with relational features (i.e., an error that does not occur when
relational features are removed). Two kinds of data characteristics increase the likelihood of such
errors. First, when the data characteristics lead to lower overall classification accuracy (e.g., when
the non-relational attributes are not highly predictive), then the computed relational feature values
will be less reliable. Second, when a typical relational link is highly predictive (e.g., as occurs when
the data exhibits higkelational autocorrelation), then the potential effect of any incorrect predic-
tion is magnified. As the magnitude of either of these data set characteristics increases, cautious
algorithms should outperform more aggressive algorithms by an increasing amount.

Our contributions are as follows. First, we describe cautious inference and how four commonly-
used families of existing CC inference algorithms can exhibit more or less caution. Second, we
introduce cautious learning and explain how it can help compensate for the train/test disparity that
occurs when a CC algorithm uses estimated class labels during testing. Third, we identify the data
characteristics for which these cautious techniques should outperform more aggressive approaches,
as introduced in the preceding paragraph and discussed in more detail in Section 6. Our experi-
mental results confirm that cautious approaches typically do outperform less cautious variants, and
that these effects grow larger when there is a greater probability of incorrect relational inference.
Moreover, our results reveal that in most casesdegree of caution used has a larger impact on
performance than the choice of the underlying inference algorithm. In particular, the cautious algo-
rithms perform very similarly, regardless of wheth€Ac or Gibbsor LBP is used, although our
results also confirm that, for some data characteristics, inferencé.-BRiperforms comparatively
poorly. These results suggest that in many cases the higher computational compl&ilipsdnd
LBPis unnecessary, and that the much falBi: should be used instead. Finally, our results and
analysis enable us to answer the previously mentioned questions regarding CC.

The next two sections summarize collective classification and related work. Section 4 then
explains why CC needs to be cautious and describes cautious inference and learning in more detail.
In Section 5, we describe how caution can be specifically used by the four families of CC inference
algorithms. Section 6 then describes our methodology and hypotheses. Section 7 presents our
results, which we discuss in Section 8. We conclude in Section 9.

2. Collective Classification: Description and Problem Definition

In this section, we first motivate and define collective classification (CC). We then describe different
approaches to CC, different CC tasks, and our assumptions for this article.

2.1 Problem Statement and Example

In many domains, relations exist among instances (e.g., among hyperlinked web pages, social net-
work members, co-cited publications). These relations may be helpful for classification tasks, such
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as predicting the topic of a publication or the group membership of a person (Koller et al., 2007).
More formally, we consider the following task (based on Macskassy and Provost, 2006):

Definition 1 (Classification of Graph-based Data) Assume we are given a grapi\GE, X,Y,C)
where V is a set of nodes, E is set of (possibly directed) edgesieachis an attribute vector for
node veV, eachYeY is alabel variable for y and C is the set of possible labels. Assume further
that we are given a set of “known” value$Yor nodes  c V, so that ¥ = {yi|v; € VK}. Thenthe
task is to infer ¥, the values of Yfor the remaining nodes with “unknown” values{\=V —VK),

or a probability distribution over those valués.

For example, consider the task of predicting whether a web page belongs to a professor or a stu-
dent. Conventional supervised learning approaches ignore the link relations and classify each page
using attributes derived from its content (e.g., words present in the page). We refer to this approach
asnon-relational classification. In contrast, a techniquertdational classificatiorwould explicitly
use the links to construct additional relational features for classification (e.g., for each page, includ-
ing as features the words from hyperlinked pages). This additional information can potentially in-
crease classification accuracy, though may sometimes decrease accuracy as well (Chakrabarti et al.,
1998). Alternatively, even greater (and usually more reliable) increases can occur when the class
labelsof the linked pages are used instead to derive relevant relational features (Jensen et al., 2004).
However, using features based on these labels is challenging, because some or all of the labels are
initially unknown, and thus typically must be estimated and then iteratively refined in some way.
This process of jointly inferring the labels of interrelated nodes is knovaobective classification
(CO).

Figure 1 summarizes an example execution of a simple CC algoii@¥y applied to the binary
web page classification task. Each step in the sequence displays a graph of four nodes, where each
node denotes a web page, and hyperlinks among them. Each node has a clagstlabealet of
possible class labels &= {P, S}, denotingprofessoraindstudents, respectively. Three nodes have
unknownlabels ¥¥ = {vi,v»,v4}) and one node haskmownlabel X = {vs}). In the initial state
(step A), no labey; has yet been estimated for the node¥'th so each is set tmissing(indicated
by a question mark). Each node has three binary attributes (represeritgd Nypdes invV also
have two relational features (one per class), represented by the fedkasch feature denotes the
number of linked nodes (ignoring link direction) that have a particular class label.

In step B, some classifier (not shown) estimates class labels for nodesising only the (non-
relational) attributes. These labels, along with the known Igthehre used in step C to compute
the relational feature value vectors. For instance, in stefp € (1 2) becauser, links to nodes
with one currenP label and two currerfslabels. In step D, a classifier re-estimates the labels using
both attributes and relational features, which changes the predicted labelofstep E, relational
feature values are re-computed using the new labels. Steps D and E then repeat until a termination
criterion is satisfied (e.g., convergence, number of iterations).

This example exhibits how relational value uncertainty occurs with CC. For instance, the feature
vector f1 is (1 0) in step C but later becomé® 1). Thus, intermediate predictions use uncertain
label estimates, maotivating the need to cautiously use such estimates.

1. VK may be empty. In addition, a separate training graph may be provided; see Section 2.3.
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A.) Initial State

CAUTIOUS COLLECTIVE CLASSIFICATION

D.) Classify (use attrs. & rel. feats.)

V3

B.) Classify (use attributes only)

E.) Re-compute rel. feat.

values
V3

C.) Compute rel. feature values

Vi Vs V3
beRd 0101] pepd 0101 %= CICIE
V v E:n.a. V v E:n.a. V v E:n.a.
1 2 — 1 2 — 1 2 —
_ Ys— _ Ys— Y3—
e e A R B e N .l (N S
f1=[7]7] =[7]7] f1=[7]7] ,=[7]7] f1=[1]0] f,=[1]2]
vi=[?] v=[?] Vg vi=[P] =[P Vy vi=[P] v=[P] Vy
%= KK %= CIKIE P 0 1)1 |
7=17) i =[217] % =[]
Y4= YF@ Y4=

%= CICE ;= CICIEN
fi=na fi=na
V4 V, _ V4 V2 -
28l S| 2 =B
%= HEd| |- O <= QA | - B0 (repeat steps Dand E...)
i =0 5=[12] vl fi=[0[1] £=[1]12] VI
YF@ VF@ 4 YFE YF 4
%= CIEE %= CIEEN
% =[111] f,=[0]2]
Y4= y4:

Figure 1: Example operation 6€A, a simple CC algorithm. Each step (A thru E) shows a graph of
4 linked nodes (i.e., web pages). “Known” values are are shown in white text on a black
background; this includes all attribute valugsand the class labgk for vs. Estimated
values are shown instead with a white background.

2.2 Algorithms for Collective Inference

For some collective inference tasks, exact methods such as junction trees (Huang and Darwiche,
1996) or variable elimination (Zhang and Poole, 1996) can be applied. However, these methods
may be prohibitively expensive to use (e.g., summing over the remaining variable configurations is
intractable for modest-sized graphs). Some research has focused on methods that further factorize
the variables, and then apply an exact procedure such as belief propagation (Neville and Jensen,
2005), min-cut partition (Barzilay and Lapata, 2005), or methods for solving quadratic and linear
programs (Triebel et al., 2007). In this article, we consider only approximate collective inference
methods.

We consider three primary types of approximate collective inference algorithms, borrowing
some terminology from Sen et al. (2008):

e Local classifier-based methodsk-or these methods, inference is an iterative process whereby
alocal classifierpredicts labels for each nodeWY using both attributes and relational fea-
tures (derived from the current label predictions), and theolkctive inferencalgorithm
recomputes the class labels, which will be used in the next iteration. Examples of this type
of CC algorithm includdCA (used in the example above) a@ibbs. Local classifiers that
have been used include Naive Bayes (Jensen et al., 2004), relational probability trees (Neville
et al., 2003a), k-nearest neighbor (McDowell et al., 2007b), and logistic regression (Sen et al.,
2008). Typically, a supervised learner induces the local classifier from the training set using
both attributes and relational features.
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e Global formulation-based methods. These methods train a classifier that seeks to opti-
mize one global objective function, often based on a Markov random field (Dobrushin, 1968;
Besag, 1974). As above, the classifier uses both attributes and relational features for infer-
ence. Examples of these algorithms include loopy belief propagation and relaxation labeling.
These do not use a separate local classifier; instead, the entire algorithm is used for both train-
ing (e.g., to learn the clique potentials) and inference. See Taskar et al. (2002) and Sen et al.
(2008) for more details.

e Relational-only methods.Recently, Macskassy and Provost (2007) demonstrated that, when
some labels are known (i.@y/K| > 0), algorithms that usenly relational information can in
some cases perform very well. We consider several variants of the algorithm they described,
WVRM. (weighted-vote relational neighbor, with relaxation labeling). This algorithm com-
putes a new label distribution for a node by averaging the current distributions of its neighbors.
It does not require any training.

With local classifier methods, learning the classifier can often be done in a single pass over the
data, does not require running collective inference, and in fact is independent of the collective infer-
ence procedure that will be used. In contrast, for global methods the local classifier and inference
algorithm are effectively unified. As a result, learning for a global method requires committing to
and actually executing a specific inference algorithm, and thus can be much slower than with a local
classifier-based method.

All of these algorithms jointly classify interrelated nodes using some iterative process. Those
that propagate from one iteration to the next a single label for each node arehaitethbeling
methods. Methods that instead propagate a probability distribution over the possible class labels
are calledsoft-labelingmethods (cf., Galstyan and Cohen, 2007). All of the local classifier-based
methods that we examine are hard-labeling metRo8sft-labeling methods, such as variants of
relaxation labeling, are also possible but require that the local classifier be able to reason directly
with label distributions, which is more complex than the label aggregation for features typically
done with approaches lIKEA or Gibbs. Section 6.6 provides more detail on these features.

2.3 Task Definitions and Focus

Collective classification has been applied to two types of inference tasks, nameiytibiesample
task, wherevX is empty, and then-sample task, wherevK is not empty. Both types of tasks
may emerge in real-world situations (Neville and Jensen, 2005). Prior work on out-of-sample tasks
(Neville and Jensen, 2000; Taskar et al., 2002; Sen and Getoor, 2006) assume that the algorithm is
also provided with a training grapr, that is disjoint from the test grapgh. For instance, a model
may be learned over the web-graph for one institution, and tested on the web-graph of another.

For in-sample tasks, where some label&iare known, CC can be applied to the single graph
G (Macskassy and Provost, 2007; McDowell et al., 2007a; Sen et al., 2008; Gallagher et al., 2008);
within-networkclassification (Macskassy and Provost, 2006) involves training on the sebseG
with known labels, and testing by running inference over the entire graph. This task simulates, for
example, fraud detection in a single large telecommunication network where some entities/nodes are

2. We could also considewvRNg, which is a soft-labeling method, to be a local classifier-based method, albeit a
simple one that ignores attributes and does no learning. However, for explication we list relational-only methods as a
separate category in the list above because our results will show they often have rather different performance trends.
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known to be fraudulent. Another in-sample task (Neville and Jensen, 2007; Bilgic and Getoor, 2008;
Neville and Jensen, 2008) assumes a separate training Graplwhere a model is learned from

Gt and inference is performed over the test gr&hwhich includes both labeled and unlabeled
nodes. For both tasks, predictive accuracy is measured only for the unlabeled nodes.

In Section 6, we will address three types of tasks (i.e., out-of-sample, sparse in-sample, and
dense in-sample). This is similar to the set of tasks addressed in some previous evaluations (e.g.,
Neville and Jensen, 2007, 2008; Bilgic and Getoor, 2008) and subsumes some others (e.g., Neville
and Jensen, 2000; Taskar et al., 2002; Sen and Getoor, 2006). We will not directly address the
within-network task, but the algorithmic trends observed from our in-sample evaluations should be
similar?

2.4 Assumptions and Limitations

In this broad investigation on the utility of caution in collective classification, we make several
simplifying assumptions. First, we assume data is obtained passively rather than actively (Rattigan
et al., 2007; Bilgic and Getoor, 2008). Second, we assume that nodes are homogeneous (e.g., all
represent the same kind of object) rather than heterogeneous (Neville et al., 2003a; Neville and
Jensen, 2007). Third, we assume that links are not missing, and need not be inferred (Bilgic and
Getoor, 2008). Finally, we do not attempt to increase autocorrelation via techniques such as link
addition (Gallagher et al., 2008), clustering (Neville and Jensen, 2005), or problem transformation
(Tian et al., 2006; Triebel et al., 2007).

Our example in Figure 1 employs a simple relational feature (i.e., that counts the number of
linked nodes with a specific class label). However, several other types of relations exist. For ex-
ample, Gallagher and Eliassi-Rad (2008) describe a topology of feature types, including structural
features that are independent of node labels (e.g., the number of linked neighbors of a given node).
We focus on only three simple types of relational features (see Section 6.6), and leave broader in-
vestigations for future work. Likewise, for CC algorithms that learn, we assume that training is
performed just once, which differs from some prior work where the learned model is updated in
each iteration (Lu and Getoor, 2003b; Gurel and Kersting, 2005).

3. Related Work

Besag (1986) originally described the “Iterated Conditional Modes” (ICM) algorithm, which is a
version of thelCA algorithm that we consider. Several researchers have reported that employ-
ing inter-instance relations in CC algorithms can significantly increase predictive accuracy (e.g.,
Chakrabarti et al., 1998; Neville and Jensen, 2000; Taskar et al., 2002; Lu and Getoor, 2003a).
Furthermore, these algorithms have performed well on a variety of tasks, such as identifying secu-
rities fraud (Neville et al., 2005), ranking suspicious entities (Macskassy and Provost, 2005), and
annotating semantic web services (Hel3 and Kushmerick, 2004).

In each iteration, a CC algorithm predicts a class label (or a class distribution) for each node and
uses it to determine the next iteration’s predictions. Although using label predictions from linked
nodes (instead of using the larger number of attributes from linked nodes) encapsulates the influence
of a linked node and simplifies learning (Jensen et al., 2004), it can be problematic. For example,

3. Indeed, we performed additional experiments where we reprdadheesynthetic data of Sen et al. (2008), but then
transformed the task from their within-network variant to a variant that uses a separate graph for training (as done in
this article), and obtained results similar to those they reported.
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iterating with incorrectly predicted labels can propagate and amplify errors (Neville and Jensen,
2007; Sen and Getoor, 2006; Sen et al., 2008), diminishing or even reducing accuracy compared
to non-relational approaches. In this article, we examine the data characteristics (and algorithmic
interactions) for which these issues are most serious and explain how cautious approaches can ame-
liorate them.

The performance of CC compared to non-relational learners depends greatly on the data char-
acteristics. First, for CC to improve performance, the data must exkibiional autocorrelation
(Jensen et al., 2004; Neville and Jensen, 2005; Macskassy and Provost, 2007; Rattigan et al., 2007;
Sen et al., 2008), which is correlation among the labels of related instances (Jensen and Neville,
2002). Complex correlations can be exploited by some CC algorithms, capturing for instance the
notion “Professors primarily have out-links to Students.” In contrast, the simplest kind of corre-
lation ishomophily(McPherson et al., 2001), in which links tend to connect nodes with the same
label. To facilitate replication, Appendix A defines homophily more formally.

A second data characteristic that can influence CC performarmtgimsite predictivenesd-or
example, if the attributes are far less predictive than the selected relational features, then CC algo-
rithms should perform comparatively well vs. traditional algorithms (Jensen et al., 2004). Third,
link densityplays a role (Jensen and Neville, 2002; Neville and Jensen, 2005; Sen et al., 2008); if
there are few relations among the instances, then collective classification may offer little benefit.
Alternatively, algorithms such dBP are known to perform poorly when link density is very high
(Sen and Getoor, 2006). Fourth, an important factor idaheled proportion(the proportion of test
nodes that have known labels). In particular, if some node labels are kngthin|0), these labels
may help prevent CC estimation errors from cascading. In addition, if a substantial number of la-
bels are known, simpler relational-only algorithms may be the most effective. Although additional
data characteristics exist that can influence the performance of CC algorithms, siegress of
disparity (Jensen et al., 2003) amdsortativity(Newman, 2003; Macskassy, 2007), we concentrate
on these four in our later evaluations.

Compared to this article, prior studies provide complementary results and make some relevant
comparisons, but do not examine important variations that we consider here. For instance, Jensen
et al. (2004) only investigate a single collective inference algorithm, and Macskassy and Provost
(2007) focus on relational-only (univariate) algorithms. Sen et al. (2008) assess several algorithms
on real and synthetic data, but do not examine the impact of attribute predictiveness or labeled pro-
portion. Likewise, Neville and Jensen (2007) evaluate synthetic and real data, but vary data char-
acteristics (autocorrelation and labeled proportion) for only the synthetic data, do not cé@gider
and considetBP only for the synthetic data. In addition, only one of these prior studies (Neville
and Jensen, 2000) evaluates an algorithm relaté@Ag, which is a simple cautious variant i A
that we show has promising performance. Moreover, these studies did not compare algorithms that
vary only in their degree of cautious inference, or use cautious learning.

4. Types of Caution in CC and Why Caution is Important

Section 3 described how collective classification exploits label predictions to try to increase ac-
curacy, but how iterating with incorrectly predicted labels can sometimes propagate and amplify
errors. To address this problem, we recently proposed the use of cautious inference for CC (Mc-
Dowell et al., 2007a). We defined an inference algorithm to be cautious if it sought to “explicitly
identify and preferentially exploit the more certain relational information.” In addition, we ex-
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plained that a variant dCA that we here callCAc is cautious because it selectively ignores class
labels that were predicted with less confidence by the local classifier. Previously, Neville and Jensen
(2000) introduced a simpler versibof ICA: but compared it only with non-relational classifiers.

We showed thallCA¢c can outperformlCA andGibbs, but did not identify the data conditions under
which such gains hold.

In this article, we expand our original notion of caution in two ways. First, we broaden our
idea of cautious inferencéo encompass several other existing CC inference techniques that seek
the same goal (managing prediction uncertainty). Recognizing the behavioral similarities between
these different algorithms helps us to better assess the strengths and weaknesses of each algorithm
for a particular data set. Second, we introdwegitious learning, a technique that ameliorates
prediction uncertainty even before inference is applied, which can substantially increase accuracy.
Below we detail these two types of caution.

e A CC algorithm exhibitautious inferenceif its inference process attends to the uncertainty
of its intermediate label predictions. Usually, this uncertainty is approximated via the pos-
terior probabilities associated with each predicted label. For instance, a CC algorithm may
exercise cautious inference by favoring predicted information that has less uncertainty (higher
confidence). This is the approach takenlByc, which uses only the most certain labels at
the beginning of its operation, then gradually incorporates less certain predictions in later it-
erations. Alternatively, instead of always selecting the most likely class label for each node
(like ICA andICAc), Gibbsre-samples the label of each node based on its estimated distribu-
tion. This re-sampling leads to more stochastic variability (and less influence) for nodes with
less certain predictions. Finally, soft-labeling algorithms &P, relaxation labeling, and
WVRNMNg directly reason with the estimated label distributions. For instameBN_ averages
the estimated distributions of a node’s linked neighbors, which gives more influence to more
certain predictions.

e A CC algorithm exhibitcautious learningif its training process is influenced by recogniz-

ing the disparity between the training set (where labels are known and certain) and the test
scenario (where labels may be estimated and hence incorrect). In particular, a relational fea-
ture may appear to be highly predictive of the class when examining the training set (e.g., to
learn conditional probabilities or feature weights), yet its use may actually decrease accuracy
if its value is often incorrect during testing. In response, one approach is to ensure that appro-
priate training parameters are cross-validated using the actual testing conditions (e.g., with
estimated test labels). We use PLUL to achieve this goal.

The next section describes how these general ideas can be applied. Later, our experimental
results demonstrate when they lead to significant performance improvements.

5. Applying Cautious Inference and Learning to Collective Classification

The previous section described two types of caution for CC. Each attempts to alleviate potential
estimation errors in labels during collective inference. Cautious inference and cautious learning
can often be combined, and at least one is used or is applicable to every CC algorithm known to

4. Their algorithm is likd CAc, except that it does not consider how to favor “known” labels fkofn
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us. In this section, we provide examples of how both types can be applied by describing specific
CC algorithms that exploit cautious inference (Sections 5.1-5.4), and by describing how PLUL can
complement these algorithms with cautious learning (Section 5.5). Section 5.6 then discusses the
computational complexity of these algorithms.

We describe and evaluate four families of CC inference algorithi@gt, Gibbs, LBP, and
WVRN® Among local classifier-based algorithms, we chiia andGibbsbecause both have been
frequently studied and often perform well. As a representative global formulation-based algorithm,
we choseLBP instead of relaxation labeling because previous studies (Sen and Getoor, 2007; Sen
et al., 2008) found similar performance, with in some cases a slight edgB8FRarFinally, we select
WVRN because it is a good relational-only baseline for CC evaluations (Macskassy and Provost,
2007).

Table 1 summarizes the four CC families that we consider. Within each family, each variant use
more cautious inference than the variant listed below it. Cautious variants of standard algorithms
are given a “C” subscript (e.dCAc), while non-cautious variants of standard algorithms are given
a “NC” subscript (e.g.Gibbsyc). For the latter case, our intent is not to demonstrate large perfor-
mance “gains” for a standard algorithm vs. a new non-cautious variant, but to isolate the impact of
a particular cautious algorithmic behavior on performance. While the result may not be a theoret-
ically coherent algorithm (e.gGibbsyc, unlike Gibbs, is not a MCMC algorithm), in every case
the resultant algorithrdoesperform well under data set situations where caution is not critical (see
Section 7). Thus, comparing the performance of the cautious vs. non-cautious variants allows us to
investigate the data characteristics for which cautious behavior is more imgbrtant.

5.1 ICA Family of Algorithms

Figure 2 displays pseudocode 1@A, ICAc, andICAk,, depending on the setting of the parameter
AlgType. We describe each in turn.

5.1.1I1CA

In Figure 2, step 1 is a “bootstrap” step that predicts the class laléleach node ivY using

only attributes (con,frecords the confidence of this prediction, BOA ignores this information).

The algorithm then iterates (step 2). During each iterali®i, selects all available labels (step 3),
computes the relational features’ values based on these labels (step 4), and then re-predicts the class
label of each node using both attributes and relational features (step 5). After iterating, hopefully to
convergence, step 6 returns the final set of estimated class labels.

Types of Caution Used:Steps 3-4 of CA use all available labels for feature computation (including
estimated, possibly incorrect labels) and step 5 picks the single most likely label for each node based
on the new predictions. In these steps, uncertainty in the predictions is ignoredlTAugnes not

5. TechnicallywvRN by itself is a local classifier, not an inference algorithm, but for brevity we refer to the family of
algorithms based on this classifier (suchwadRNg ) aswvRN

6. Section 7 shows that the non-cautious varié@s, Gibbsyc, andLBRyc perform similarly to each other. Thus, our
empirical results would change little if we compared all of the cautious algorithms against the more st&Adard
However, the results foBibbsand LBP would then concern performance differences between distinct algorithms,
due to conjectured but unconfirmed differences in algorithmic properties. By instead confpénirsys. Gibbsyc
andLBP vs.LBRyc, we more precisely demonstrate that the cautious algorithms benefit from specifically identified
cautious behaviors.
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| Name

| Cautious Inf.? |

Key Features

| Type |

Evaluated by? |

ICAC

ICAkn

ICA

Favors more
conf. labels

Favors known
labels

Not cautious

Local classifier-based methods that iteratively classify nodes, Jding a final graph state

Relational features depend only gnHard
“more confident” estimated labels;
later iterations loosen confidenge
threshold.

First iteration: rel. features deperndHard
only on known labels. Later iterations:

use all labels.

Always use all labels, known and esti-Hard
mated.

Neville and Jensen (2000);
McDowell et al. (2007a)

McDowell et al. (2007a)

Lu and Getoor (2003a); Se
and Getoor (2006); Mc-
Dowell et al. (2007a,b)

=)

Gibbs

Gibbsyc

Samples from
estimated

distribution

Not cautious

Local classifier-based algorithms that compute conditional probaltities for eac

At each step, classifies usialy neigh- | Hard
bor labels, then samples new la-
bels from the resultant distributions.
Records new labels to produce final
marginal statistics.

Like Gibbs, but always pick most Hard

likely label instead of sampling.

h node

D

Jensen et al. (2004); Neville
and Jensen (2007); Sen et al.
(2008)

None, but very similar to
ICA.

LBP

LBRc

Global formulation algorithms b

Reasons with
estimated

distribution

Not cautious

ased on loopy belief propagation (LBP)

Passes continuous-valued messageSoft
between linked neighbors until con-
vergence.

Like LBP, but each node alwaysHard
chooses single most likely label to use
for next round of messages.

Taskar et al. (2002); Nevillg
and Jensen (2007); Sen et al.
(2008)

WVRNy

WVRNcac

WVRNcarNC

Relational-only algorithms

Reasons  with
estimated

distribution
Favors nodes
closer to known
labels

Not cautious

Computes new distribution by aver- Soft

aging neighbors’ label distributions;

combines old and new distributions
via relaxation labeling.

Initializes nodes invVY to missing.
Computes most likely label by averag-
ing neighbors’ labels, ignoringiss-
ing labels.

Like wRNca+c, but nomissingla- | Hard
bels are used. Instead, initialize nodes

in VY by sampling from the prior labe
distribution.

Hard

Macskassy and Provost
(2007); Gallagher et al
(2008)

Macskassy and Provost
(2007); similar to Galstyan
and Cohen (2007)

Table 1: The ten collective inference algorithms considered in this articleledivinto four fami-
lies. Hard/soft refers to hard-labeling and soft-labeling (see Section 2.2).

perform cautious inference. However, it may exploit cautious learning to learn the classifier models

that are used for inference MindMaR).

5.1.2 ICAc

In steps 3-4 of Figure 2ACA assumes that the estimated node labels are all equally likely to be
correct. WhenAlgTypeinstead selectBCAc, the inference becomes more cautious by only con-

sidering more certain estimated labels. Specifically, step 3 “commits™Mhtmly the besim of
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ICA _classify (V, E, X,YX,Mar,Ma, n,AlgType)=

/1 V=nodes E=edgesX=attribute vectorsy=labels of known node&f = {yi|vi € VK})

I Mar=local classifier (uses attributes and relatioi)=classifier that uses only attributes
/I n=# of iterationsAlgType=ICA, ICAkn, or ICA

1 for eachnodev; € VY do // Bootstrap: estimate labgl for each node
(yi,conf) «— Ma(X) /I using attributes only
2 forh=0tondo
3 /I Select node labels to use for computing relational feature values, stttre in
if (AlgType=ICAc) /I ForICAc: use known andn most confident
m«— [VY|-(h/n) Il estimated labels, gradually increase

Y YK U{yilv € VY Arank(conf;) < m}
else if(h = 0) and (AlgType ICAkn)

Y — YK Il For ICAkn(first iteration): usenly known labels
else Il For ICAk, (after first iteration) andiCA: useall

Y —YKU{yilv eVY} /I labels (known and estimated)
4 for gach nodev; € VY do

fi « calcRelatFeatsd(,E,Y’) /I Compute feature values, using labels selected above
5 for eachnodey; € VY doﬂ /I Re-predict most likely label, using attributes

(yi,conf) — Magr(X, fi) /I and relational features
6 return {yi|v cVY} // Return predicted class label for each node

Figure 2: Algorithm forl CA family of algorithms. We use = 10 iterations.

the current estimated labels; other labels are consideissingand thus ignored in the next step.
Step 4 computes the relational features using only the committed labels, and step 5 classifies using
this information. Step 3 gradually increases the fraction of estimated labels that are committed per
iteration (e.g., ih=10, from 0%, 10%, 20%,..., up to 100%). Node label assignments committed in
an iterationh are not necessarily committed again in iteratioh 1 (and may in fact change).

ICAc requires some kind of confidence measure (¢amfFigure 2) to determine the “begti of
the current label assignments (those with the highest confidence “rank”). We adopt the approach of
Neville and Jensen (2000) and use the posterior probability of the most likely class for eaclasode
conf;. In exploratory experiments, we found that alternative measures (e.g., probability difference
of the top two classes) produced similar results.
Types of Caution Used:ICAc favors more confident information by ignoring nodes whose labels
are estimated with lower confidence. Step 3 executes this preference, which affects the algorithm
in several ways. First, omitting the estimated labels for some nodes causes the relational feature
value computation in step 4 to ignore those less certain labels. Since this computation favors more
reliable label assignments, subsequent assignments should also be more reliable. Second, if any
node links only to nodes witmissinglabels, then the computed value of the relational features for
that node will also benissing; Section 6.5 describes how the classifier in Step 5 handles this case.
Third, recall that a realistic CC scenario’s test set may have links to nodes with known labels; these
nodes, represented M, provide the “most certain” labels and thus may aid classificaiGic
exploitsonly these labels for iteration= 0. In this case, step 3 ignores all estimated labels (every
estimate foilvY), but step 4 can still compute some relational feature values based on known labels

2788



CAUTIOUS COLLECTIVE CLASSIFICATION

Gibbs_classify (V, E, X,YX,Mar, Ma, n,ng,C,AlgType)=

/I V=nodes E=edgesX=attribute vectorsy=labels of known node&t = {yi|vi € VK})

I Mar=local classifier (uses attributes and relatioi)=classifier that uses only attributes
/I n=# of iterationsng= “burn-in” iters.,C=set of class label#lgType=Gibb®r Gibbsyc

1 for eachnodey; € VY do // Bootstrap: estimate label prokfx.
Bi — Ma(X) /I for each node, using attributes only
2 for eachnodey, € VY do /I Initialize statistics
foreachceC
stats{][c] — O
3 forh=1tondo /I Repeat fon iterations

for eachnodev; € VY do
4 switch (AlgType):
case(Gibbs):  yj «+ sam pIeDis(Bi) /I Sample next label from distribution
case(Gibbsyc): Vi < argmaxec bi(c) // Or, pick most likely label from dist.

5 if (h> ng) statsj, yi] « statsi,yi] +1 /I Record stats. on chosen label
6 Y —YKU{yilvi eVY} /I Compute feature values, using known
for gach nodev; € VY do /I labels and labels chosen in step 4
fi — computeRelatFeatureg(E,Y’)
7 for gach nodey; gVU do /I Re-estimate label probs., using
by — Magr(X;, i) /I attributes and relational features
8 return stats /l Return marginal stats. for each node

Figure 3: Algorithm for Gibbs sampling. Thousands of iterations are typicakded.

from VK. Thus, the known labels influence the first classification in step 5, before any estimated
labels are used, and in subsequent iterations. Fin@lAg can also benefit from PLUL.

5.1.3 ICAkn

The above discussion highlighted two different effects fi@#¢: favoring more confident esti-
mated labels vs. favoring known labels fraffi. An interesting variant is to favor the known labels
in the first iteration (just likdCAc), but then use all labels for subsequent iterations (just @s).
We call this algorithmCAk, (“ICA+Known”).

Types of Caution Used:ICAkn favors only known nodes. It is thus more cautious tHaA, but
less cautious thalCAc. It can also benefit from cautious learning via PLUL.

5.2 Gibbs Family of Algorithms

Figure 3 displays pseudocode for Gibbs sampling (Gibbs) and the non-cautious Gilibg{c.
We describe each in turn.

5.2.1 Gibbs

In Figure 3, step 1 (bootstrapping) is identical to step 1 ofl@ algorithms, except that for each
nodey; the classifier must output a distributi@containing the likelihood of each class, not just

2789



McDOWELL, GUPTA AND AHA

the most likely class. Step 2 initializes the statistics that will be used to compute the marginal class
probabilities for each node. In step 4, within the loop, the algorithm probabilistically samples the
current class label distribution of each node and assigns a singleyjdizsed on this distribution.
This label is also recorded in the statistics during Step 5 (after thenfiigtrations are ignored for
“burn-in”). Step 6 then selects all labels (known labels and those just sampled) and uses them to
compute the relational features’ values. Step 7 re-estimates the posterior class label probabilities
given these relational features. The process then repeats. When the process terminates, the statistics
recorded in step 5 approximate the marginal distribution of class labels, and are returned by step 8.
Types of Caution Used:Like ICAc, Gibbsis cautious in its use of estimated labels, but in a different
way. In particular]JCAc exercises caution in step 3 by ignoring (at least for some iterations) labels
that have lower confidence. In contrastbbsexercises caution by sampling, in step 4, values from
each node’s predicted label distribution—causing nodes with lower prediction confidence to reflect
that uncertainty via higher fluctuation in their assigned labels, yielding less predictive influence on
their neighbors. Gibbs can also benefit from cautious learning via PLUL.

We expeciGibbsto perform better thalCAc, since it makes use of more information, but this
requires careful confirmation. In additioBjbbsis considerably more time intensive thED¥Ac or
ICA (see Section 5.6).

5.2.2 Gibbsyc

Gibbsgyc is identical toGibbsexcept that instead of sampling in step 4, it always selects the most
likely label. This change make&3ibbsyc deterministic (unlikeGibbs), and make&ibbsyc behave
almost identically tdCA. In particular, observe that after any number of iteratioiis < h < n),

ICA and Gibbsyc will have precisely the same set of current label assignments for every node.
However,ICA’s result is the final set of label assignments, whe&absc's result is the marginal
statistics computed from these time-varying assignments. For a given datd@étcibnverges to

an an unchanging set of label assignments, then for sufficiently ta@ibsc’s final result (in

terms of accuracy) will be identical I€A’s. If, however, some nodes’ labels continue to oscillate
with ICA, thenlCA andGibbsyc will have different results for some of those nodes.

Types of Caution Used: Just likeICA, Gibbsyc uses all available labels for relational feature
computation, and always picks the single most likely label based on the new predictions. Thus,
Gibbsyc does not perform cautious inference, though it can benefit from cautious learning to learn
the classifierMa andMag.

5.3 LBP Family of Algorithms
This section describes loopy belief propagation (LBP) and the non-cautious \ZBia.

5.3.1LBP

LBP has been a frequently studied technique for performing approximate inference, and has been
used both in early work on CC (Taskar et al., 2002) and in more recent evaluations (Sen and Getoor,
2006; Neville and Jensen, 2007; Sen et al., 2008). Most works that s@Bigyfor CC treat the

entire graph, including attributes, as a pairwise Markov random field (e.g., Sen and Getoor, 2006;
Sen et al., 2008) and then justibBP as an example of a variational method (cf., Yedidia et al.,
2000). The basic inference algorithm is derived from belief propagation (Pearl, 1988), but applied
to graphs with cycles (McEliece et al., 1998; Murphy et al., 1999).
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LBP performs inference via passing messages from node to node. In partigulgfc) repre-
sents node;’s assessment of how likely it is that nodghas a true label of class In addition,
@ (c) represents the “non-relational evidence” (e.g., based only on attributes)Having clas<,
andyij (¢, c) represents the “compatibility function” which describes how likely two nodes of class
c andc’ are linked together (in terms of Markov networks, this represents the potential functions
defined by the pairwise cliques of linked class nodes). Given these two sets of functions, Yedidia
et al. (2000) show the belief that nodkas clas€ can be calculated as follows:

bi(c) = a(g(c)kﬂ my_i(C) (@)
eN;

wherea is a normalizing factor to ensure thjit.cbi(c) =1 andN; is the neighborhood function
defined as:

N, = {VjB(Vi,Vj) S E} .

The messages themselves are computed recursively as:

m_jc)=a (Q(C/)llJij(C/aC) [

ceC keNi\ j

”kﬂi(cl)> : 2)

Observe that the message frono j incorporates the beliefs of all the neighbors @R;) except j
itself. m_ ;(c) is the “new” value ofm._. j(c) to be used in the next iteration.

For CC, we need a model that generalizes from the training nodes to the test nodes. The above
equations do not provide this, since they have node-specific potential functiongi(iis.specific
to noded andj). Fortunately, we can represent each potential function as a log-linear combination
of generalizable features, as commonly done for such Markov networks (e.g., Della Pietra et al.,
1997; McCallum et al., 2000a). More specifically for CC, Taskar et al. (2002) used a log-linear
combination of functions that indicate the presence or absence of particular attributes or other fea-
tures. Several papers (e.g., Sen and Getoor, 2006; Sen et al., 2008) have described a general model
on how to accomplish this, but do not completely explain how to perform the computation. For a
slight loss in generality (e.g., assuming that our nodes are represented by a simple attribute vector),
we now describe how to perforirBP for CC on an undirected graph. In particular, My be the
number of attributesDy, be the domain of attributie, andw, »  be a learned weight indicating how
strongly a value ok for attributeh indicates that a given node has clas$n addition, letf;(h,k)=1
iff the ht" attribute of nodé is k (i.e., X = k). Then

@(c) =exp< > exp(Wnk) fi(h,k))>

he{T-Na} KED,

which is a special case of logistic regression. We likewise define similar learned weights of the
form w ¢ that indicate how likely a node with labelis linked to a node with labef, yielding the
compatibility function

Wij(c,c) = exp(wc) -
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LBP _classify(V,E,X,YX,w,C,N, AlgType)=
/I V=nodes E=edgesX=attribute vectorsy=labels of known node&t = {yi|vi € VK})
Il w=learned paramsC=set of class label$y=neighborhood functAlgType=LBFor LBR\c

1 foreach(v;,vj) € E such thav; € VY do /I Initialize all messages
foreachce Cdo
if (v eVK) I 1f class is known (}), set message to its
m_j(C) < a-expiv,c) Il final, class-specific value
else /I Otherwise, message starts with same value
m_j(c) —a Il for every class, but will vary later
2 while (messages are still changing)
3 for each (vi,v;) € E such thav; € VY do// Perform message passing
foreachce Cdo
m_;(c) — aYoec (A (C)expWe c) Mienj Mk—i(C))
4 for each (v, vj) € E such thav; € VY do
if (AlgType=LBP) // ForLBP, copy new messages for use in
m—j(c) —m_;(c) Il next iteration
else
c — argmax;ec(m’_,j (c)) I/ For LBRyc, select most likely label for node
for eachce Cdo /| Treat selected label the same as a “known”
m_j(c) — expiy ¢) /I label for use in the next iteration
5 for eachnodev; € VY do /l Compute final beliefs
for eachce Cdo
bi (C) — ag (C) HKGNi My (C)
6 return {b} /l Return final beliefs

Figure 4: Algorithm for loopy belief propagation (LBR).is a normalization factor.

As desired, the compatibility function is now independent of specific node identifiers, that is, it
depends only upon the class labelsndc’, noti and j. We use conjugate gradient descent to learn
the weights (cf., Taskar et al., 2002; Neville and Jensen, 2007; Sen et al., 2008).

Finally, we must consider how to handle messages from nodes with a “known” class label.
Suppose node has known clasy;. This is equivalent to having a hode where the non-relational
evidencep(c) =1 if cisy; and zero otherwise. Singgis known, nodey; is not influenced by its
neighbors. In that case, using Equation 2 (with an empty neighborhood for the product) yields:

mj(c) = O(CZC(R(C/NJH (c,c)=a-yij(yi,c) =a-exp(W.c) - (3)

Given these formulas, we can now present the complete algorithm in Figure 4. In Step 1, the
messages are initialized, using Equation g ifs a known node; otherwise, each value is sat to
(creating a uniform distribution). Steps 2-4 performs message passing until convergence, based on
Equation 2. Finally, step 5 computes the final beliefs using Equation 1 and step 6 returns the results.
Types of Caution Used:Like Gibbs,LBP exercises caution by reasoning based on the estimated
label uncertainty, but in a different manner. Instead of sampling from the estimated distribution,
LBP in step 3 directly updates its beliefs using all of its current beliefs, so that the new beliefs
reflect the underlying uncertainty of the old beliefs. In particular, this uncertainty is expressed
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WVRN RL _classify (V, YK, n,C, bprior,N, )=
/I V=nodes)YK=labels of known node&’ = {yi|vi € VK}), n=# of iterations
Il C=set of class label$yrior=class priorsN=neighborhood functl;=decay factor
1 for gach nodev; € VK do /I Create belief vector for each known label
b; — makeBelie fsFromKnownClas$§(,y;) Il (all zeros except at index for clagd
for gachpodevi eVY do /I Create initial beliefs for unknown labels
bi < Dbprior I/l (using class priors as initial setting)
2 forh=0tondo /I Iteratively re-compute beliefs
3 for eachnodev; € VY do /l Compute new distribution for each node
o — ﬁ SvieN, Bj /I by averaging neighbors’ distributions
4 for eachnodev; € VV do /I Perform simulated annealing
b — Mo+ (1—Mb;
5 return {bjlv; €VY} I/ Return belief distribution for each node

Figure 5: Algorithm forwwRNz . Based on Macskassy and Provost (2007), wernus€el00 itera-
tions with a decay factor df = 0.99.

by the continuous-valued numbers that represent each mesgageLBP can also benefit from
cautious learning with PLUL,; in this case, PLUL influences g, x andw, ¢ weights that are
learned (see Section 6.4).

5.3.2 LBRc

LBR\c is identical toLBP except that after the new messages are computed in step 3, in step 4
LBRyc picks the single most likely label to represent the message fronto v;. LBRyc then treats

¢’ as equivalent to a “known” labg] for v; and re-computes the appropriate messggg (c) using
Equation 3.

Types of Caution Used:Like ICA andGibbsyc, LBRyc is hon-cautious because it uses all available
labels for relational feature computation and always picks the single most likely label based on the
new predictions. In essence, the “pick most likely” step transforms the soft-lalkdBiR@lgorithm

into the hard-labeling.BRyc algorithm, removing cautious inference just as the “pick most likely”
step did forGibbsyc. However,LBRyc, like LBP, can still benefit from cautious learning with
PLUL.

5.4 wvRN Family of Algorithms

Figure 5 displays pseudocode fovRNg|, a soft-labeling algorithm. For simplicity, we present the
related, hard-labeling variami®/RNca .c andwvRNca:nc Separately in Figure 6. Each of these is

a relational-only algorithm; Section 7.9 will discuss variants that incorporate attribute information.
5.4.1 wRMN_

WVRMN (Weighted-Vote Relational Neighbor, with relaxation labeling) is a relational-only CC al-
gorithm that Macskassy and Provost (2007) argued should be considered as a baseline for all CC
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WVRN _ICA classify(V,YX,n,C,bprior,N,AlgType)=
/I V=nodes)YX=labels of known node&{ = {yi|vi € VK}), n=# of iters. C=class labels
1 Bprior=class priorsN=neighborhood functiorAlgType=wvRNa.c or WRNcanc

1 for eachnodey; € VY do

switch (AlgType): /I Set initial value for unknown labels...

case(WvRNcaic): i« '? /I ...start labels amissing

case(WVvRNca+ne): y; <+ sam pIeDis(Bprior) /I ...or sample label from class priors
2 forh=0tondo /I Iteratively re-label the nodes
3 for eachnodev; € VY do

N —{vjeNlyj # '? } // Find all non-missingneighbors

if (|N/| >0) /I New label is the most common label

y, —argmaxcc | {vj € N'ly; =c} | /I amongst those neighbors

elsey, =y; /l'1f no such neighbors, keep same label
4 for eachnodev; € VY do I After all new labels are computed,

Vi — Vi /I update to store the new labels
5 return {yi|vi € VY} I/ Return est. class label for each node

Figure 6: Algorithm foMwWwRNca .c andwvRNca:nc. Thisis a “hard labeling” version afvRNg ;
each of the 5 steps corresponds to the same numbered step in Figure 5. We 186
iterations.

evaluations. At each iteration, each nadgpdates its estimated class distribution by averaging the
current distributions of each of its linked neighbovevRNg, ignores all attributes (non-relational
features). ThuswvRMN_ is useful only if the test set links to some nodes with known labels to
“seed” the inference process. Macskassy and Provost showed that this simple algorithm can work
well if the nodes exhibit strong homophily and enough labels are known.

Step 1 ofwvRNg (Figure 5) initializes a belief vector for every node, using the known labels
for nodes invKk, and a class prior distribution for nodes\iY. For each node, step 3 averages the
current distributions of its neighbors, while step 4 performs simulated annealing to ensure conver-
gence. Step 5 returns the final beliefs. For simplicity, we omit edge weights from the algorithm’s
description, since our experiments do not use them.

Types of Caution Used:SincewvRNgy. computes directly with the estimated label distributions, it
exercises cautious inference in the same manneB&s However, unlike the other CC algorithms,
it does not learn from a training set, and thus cautious learning with PLUL does not apply.

5.4.2 wWRNca+c AND WRNca+NC

Figure 6 presents a hard-labeling alternativevidRNy . Each of the five steps mirror the corre-
sponding step in the description @ivRNg . In particular, for nodeys;, step 3 computes the most
common label among the neighborswf(the hard-labeling equivalent of averaging the distribu-
tions), and step 4 commits the new labels without annealing.

However, with a hard-labeling algorithm, the initial labels for each node become very important.
The simplest approach would be to initialize every node to have the most common label from the
prior distribution. However, that approach could easily produce interlinked regions of labels that
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that were incorrect but highly self-consistent; leading to errors even when many known labels were
provided. Instead, Macskassy and Provost (2007) suggest initializing eacl;odé to missing
(indicated in Figure 6 by a question mark), a value that is ignored during calculations. They call the
resulting algorithm wvRN-ICA; here we refer to it @/RNca.c. A missingabel remains for node

v; after iterationh if during that iteration every neighbor &f was alsanissing.

Alternatively, a simpler algorithm is to always compute with all neighbor labels (do not initialize
any tomissing), but initialize each label W by sampling from the prior distribution. We call this
algorithmwvRNca ne. This process is the hard-labeling analoguaeRNg, 's approach: instead
of initializing eachnode with the prior distribution, wittwRNca . nc Sampling initializes thentire
setso that it represents, in aggregate, the prior distribution.

Types of Caution Used:wvRNca . nc always uses the estimated label of every node, without regard
for how certain that estimate is. Thus, it does not exhibit cautious inference. HoweV§ca ¢

does exhibit cautious inference, although this effect was not discussed by prior work with this
algorithm. In particular, during the first iteratiowvRNca..c uses only the certain labels frov¥,

since all nodes itvY are markednissing. These known labels are used to estimate labels for every
node inVV that is directly adjacent to some node\if. In subsequent iterationsyvRNca.c

uses both labels frordX and labels from¥V that have been estimated so far. However, the labels
estimated so far are likely to be more reliable than later estimations, since the former labels are
from nodes that were closer to at least one known label. Thus, in a manner simiGAis
gradual commitment of labels based on confidemogRNca.c gradually incorporates more and
more estimated labels into its computation, where more confident labels (those closer to known
nodes) are incorporated sooner. This effect cawsd2Nca ¢ to exploit estimated labels more
cautiously.

5.5 Parameter Learning for Uncertain Labels (PLUL)

CC algorithms typically train a local classifier on a fully-labeled training set, then use that local
classifier with some collective inference algorithm to classify the test set. Unfortunately, this results
in asymmetric training and test phases: since all labels are known in the training phase, the learning
process sees no uncertainty in relational feature values, unlike the reality of testing. Moreover,
the classifier’s training is unaffected by the type of collective inference algorithm used, and how
(if at all) that collective algorithm attempts to compensate for the uncertainty of estimated labels
during testing. Consequently, the learned classifier may tend to produce poor estimates of important
parameters related to the relational features (e.g., feature weights, conditional probabilities). Even
for CC algorithms that do not use a local classifier, but instead take a global approach that learns
over the entire training graph (as witlBP and relaxation labeling), the same fundamental problem
occurs: if autocorrelation is present, then parameters learned over the fully labeled training set tend
to overstate the usefulness of relational features for testing, where estimated labels must be used.

To address these problems, we developed PLUL (Parameter Learning for Uncertain Labels).
PLUL is based on standard cross-validation techniques for performing automated parameter tuning
(e.g., Kohavi and John, 1997). The key novelty is not in the cross-validation mechanism, but in the
selection ofwhichparameters should be tuned amldy. To use PLUL, we must first select or create
an appropriate parameter that controls the amount of impact that relational features have on the
resultant classifications. In principle, PLUL could search a multi-dimensional parameter space, but
for tractability we select a single parameter that affects all relational features. For instance, when
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PLUL *lea‘rn (CCtype P7 | p7VTI'7 ETI’7 xTI'uYThVH 9 EH 9 XH 7YH):

/I CCtype=CC alg. to us®=set of parameter values to considerlabeled proportion to use
IV, Exe, X7r, Y1 = Vertices, edges, attributes, and labels from training graph

II'V4,En, Xy, Yq = vertices, edges, attributes, and labels from holdout graph

1 Y, =keepSomeLabel§(Yu) /I Randomly seledp% of labels to keep; discard others
2 bestParam— 0 /I Initialize variables to track best parameter so far
bestAcc— —1
3 foreachpePdo I Iterate over every parameter value
4 /I Learn complete CC classifier from fully-labeled training data, influenceg by
cc=learn.CC_classifie(CCtypeVrr, Err, X1r, Y11, P)
5 /I Run CC on holdout graph (with some known labg|3$ and evaluate accuracy
acc«— executeCC.inference¢c, Vi, En, Xu,Y)
6 /I Remember this parameter if it's the best so far
if (acc> bestAcc)
bestParam— p
bestAcc— acc
7 return bestParam /I Return best parameter found over the holdout graph

Figure 7: Algorithm for Parameter Learning for Uncertain Labels (PLUlje holdout graph is
derived from the original training data and is disjoint from the graph that is used later for
testing.

using a k-nearest-neighbor rule as the local classifier, we employ PLUL to adjust the wgight
relational features in the node similarity function. PLUL performs automated tuning by repeatedly
evaluating different values of the selected parameter, as used by the local classifier, together with
the collective inference algorithm (or the entire learned modelB#®?). For each parameter value,
accuracy is evaluated on a holdout set (a subset of the training set). PLUL then selects the parameter
value that yields the best accuracy to use for testing.

Figure 7 summarizes these key steps of PLUL and some additional details. First, note that
proper use of PLUL requires a holdout set that reflects the test set conditions. Thus, step 1 of the
algorithm removes some or all of the labels from the holdout set, leaving only the same percentage
of labels (Ip%) that are expected in the test set. Second, running CC inference with a new parameter
value may require re-learning the local classifier (foA or Gibbs) or the entire learned model (for
LBP). This is shown in step 4 of Figure 7. Alternatively, for Naive Bayes or k-nearest-neighbor
local classifiers, the existing classifier can simply be updated to reflect the new parameter value.

We expect PLUL’s utility to vary based upon the fraction of known labiglsthat are available
to the test set. If there are few such labels, there is more discrepancy between the training and test
environments, and hence more need to apply PLUL. However, if there are many such labels, then
PLUL may not be useful.

Because almost all CC algorithms learn parameters based in some way on relational features,
PLUL is widely applicable. In particular, Table 2 shows how we select an appropriate relational
parameter to apply PLUL for different CC algorithms. The top of the table describes how to apply
PLUL to a local classifier that is designed to be used with a CC algorithm@Reor Gibbs. The
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Local Classifier (or CC | Parameter set by PLUL (per re- | Values tested by PLUL (default in

algorithm) lational feature) bold)
Naive Bayes (NB) Hyperparametera for Dirichlet | 1,2, 4, 8, 16, 32, 64, 128, 256, 512,
prior 1024, 2048, 4096

Logistic Regression (LR) | Varianceo? of Gaussian prior 5, 10, 20, 40, 80, 160, 320, 64(
1280, 2560, 512

k-Nearest Neighbor (KNN) Weightwg 0.01, 0.03, 0.0625, 0.125, 0.25, 0.5,
0.75,1.0, 2.0
LBP Varianceo? of Gaussian prior 5, 10, 20, 100, 200, 1000, 10000,

100000, 1000000

Table 2: The classifiers (NB, LR, and kNN) and CC algorithrBRl) used in our experiments for
which PLUL can be applied to improve performance. The second column lists the key
relational parameters that we identified for PLUL to learn, while the last column shows
the values that PLUL considers in its cross-validation.

last row demonstrates how it can instead be applied to a global algorithirtBReFor instance, for

the NB classifier, most previous research has used either no prior or a simple Laplacian (“add one”)
prior for each conditional probability. By instead using a Dirichlet prior (Heckerman, 1999), we can
adjust the “hyperparametet’of the prior for each relational feature. Larger valuea tfanslate to

less extreme conditional probabilities, thus tempering the impact of relational features. For the kNN
classifier, reducing the weight of relational features has a similar net effect. For the LR classifier
and theLBP algorithm, both techniques involve iterative MAP estimation. Increasing the value

of the variance of the Gaussian prior for relational features causes the corresponding parameter to
“fit” less closely to the training data, again making the algorithm more cautious in its use of such
relational features.

While the core mechanism of PLUL—cross-validation tuning—is common, techniques like
PLUL to explicity compensate for the bias incurred from training on a fully-labeled set while
testing using estimated labels have not been previously used for CC. A possible exception is Lu and
Getoor (2003a), who appear to have used a similar technique to tune a relational parameter, but,
in contrast to this work, they did not discuss its need, the specific procedure, or the performance
impact.

PLUL attempts to compensate for the bias incurred from training on the correctly-labeled train-
ing set. Alternatively, Kou and Cohen (2007) describe a “stacked model” that learns based on
estimated, rather than true labels. While the original goal of this stacked approach was to produce a
more time-efficient algorithm, Fast and Jensen (2008) recently demonstrated that this technique, by
eliminating the bias between training and testing, does indeed reduce “inference bias.” This reduced
bias enables the stacked models to perform comparably to Gibbs sampling, even though the stacked
model is a simpler, non-iterative algorithm that consequently has higher learning bias. Interestingly,
Fast and Jensen (2008) note that the stacked model performs an “implicit weighting of local and
relational features,” as with PLUL. The stacked model accomplishes this by varying the learning
and inference procedure, whereas PLUL modifies only the learning procedure, and thus works with
any inference algorithm that relies on a learned model.
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5.6 Computational Complexity and the Cost of Caution

For learning and inference, all of the CC algorithms (variant$G#, Gibbs, wwRN and LBP)

use space that is linear in the number of nodes/instangés (A and Gibbs have significant
similarities, so we consider their time complexity first. For these two algorithms, the dominant
computation costs for inference stem from the time to compute relational features and the time to
classify each node with the local classifier. Typically, nodes are connected to a small number of
other instances, so the first cosO$N, ) per iteration. For the second cost, the time per iteration is
O(N) for NB and LR, andD(N?) for KNN. However, the number of iterations varies significantly.
Based on previous work (Neville and Jensen, 2000; McDowell et al., 2007a), we=s&0D for
variants oflCA; more iterations did not improve performance. In contr@gtpstypically requires
thousand®f iterations.

Adding or removing cautious inference I8A and Gibbsdoes not significantly change their
time complexity. In particularGibbsyc has the same complexity &ibbs. ICAc introduces an
additional cost, compared €A, of O(NlogN ) per iteration to sort the nodes by confidence.
However, in practice classification time usually dominates. Therefore, the overall computational
cost per iteration for all variants ®€A andGibbsare roughly the same, but the larger number of
iterations for variants oibbsmakes them much more time-expensive thaa, ICAkn, or ICA:.

LBP does not explicitly compute relational features, but its main loop iterates over all neighbors
of each node, thus again yielding a cost@flN;) per iteration under the same assumptions as
above. We found thatBP inference was comparable in cost to thatlGA, which agrees with
Sen and Getoor (2007). However, training tH&P classifier is much more expensive than training
the other algorithmslCA andGibbsonly require training the local classifier, which involves zero
to one passes over the data for KNN and NB, and a relatively simple optimization for LR. On the
other hand, trainintBP with conjugate gradient requires executlr8P inference many times. We
found this training to be at least an order of magnitude slower than the other algorithms, as also
reported by Sen and Getoor (200)BRyc has the same theoretical and practical time results as
LBP.

WwVRNis the simplest CC algorithm, since it requires no feature computation and the key step
of each iteration is a simple average over the neighbors of each node. As with previous algorithms,
assuming a small number of neighbors for each node yields a total time per itera@oN ¢f Prior
work (Macskassy and Provost, 2007) suggested using a somewhat larger number of iterations (100)
than withICA. Nonetheless, in practieevRNs simplicity makes it the fastest algorithm.

Finally, all of the algorithms, except fawvRN can be augmented with cautious learning via
PLUL. Executing PLUL requires repeatedly running the CC algorithm with different values of the
selected parameter. We used 9-13 different parameter values, and hence the cost of PLUL vs. not
using PLUL is about one order of magnitude.

6. Evaluation Methodology

This section describes our hypotheses and the method that we use to evaluate them.

6.1 Hypotheses

Table 3 summarizes our five hypotheses. As described in Section 1, we expect cautious behaviors
to be more important when there is a higher probability of incorrect relational inference. Thus, each
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Data characteristic Type of caution Hypothesis: relative gain of caution
considered will increase as value of characteristic...
Autocorrelation Inference ...increases (H1)
Attribute predictiveness Inference ...decreases (H2)
Link density Inference ...decreases (H3)
Labeled proportion Inference ...decreases (H4)
| Labeled proportion | Learning | ...decreases (H5)

Table 3: The five hypotheses that we investigate.

hypothesis varies one data characteristic that impacts the likelihood of such errors. In particular,
hypotheses H1-H4 vary a data characteristic to measure the impact of cautious inference, which
Section 7 will evaluate for different pairs of cautious and non-cautious inference algorithms. We
define the “relative gain of cautious inference” as the difference between the accuracies of two such
algorithms (e.g.Gibbsvs. Gibbsyc). Hypothesis H5 also varies a data characteristic, but does so
to measure the “relative gain of cautious learning” (i.e., comparing performance with vs. without
PLUL).

e H1: The relative gain of cautious inference increases with increasing autocorrelation.
Larger autocorrelation implies that relations are more predictive, and will be learned as such
by the classifier. This magnifies the impact that an error in a predicted label can have on
linked nodes. Therefore, we expect cautious inference algorithms to improve classification
by a greater margin in such cases.

e H2: The relative gain of cautious inference increases with decreasing attribute predic-
tiveness (ap). Decreaseap implies a greater potential of errors/uncertainty in the predicted
labels. The effect of cautiously using uncertain labels should be greater in such cases.

e H3: The relative gain of cautious inference increases with decreasing link density (ld).
When the number of links is high, a single mispredicted label has relatively little impact on
its neighbors. As the number of links decreases, however, a single misprediction can cause
larger relational feature uncertainty, increasing the need for caution.

e H4: The relative gain of cautious inference increases with decreasing labeled proportion
(Ip). Whenlp is high, only a few of each node’s neighbors have estimated labels (most are
known with certainty). Consequently, there is less uncertainty in relational feature values, and
less need to use estimated labels cautiously.

e H5: The relative gain of cautious learning with PLUL increases with decreasing labeled
proportion(lp). As with H4, wherlp is high there is less uncertainty in the relational features.
Thus there is less disparity between the fully correct training set (where classifier parameters
were learned) and the test set. Consequently, we expect PLUL, which compensates for any
such disparity, to matter less whkmis high.

6.2 Tasks

We will evaluate three general tasks (see Section 2.3):
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| Parameter | Abbrev. | Values tested (defaults in bold) |
Nodes per graph [\ 250
Number of class labels Nc 5
Number of attributes Na 10
Degree of homophily dh 0.1,0.2,0.3,0.4,05,0.6,7,0.8,0.9
Link density Id 0.1,0.2,0.3,0.4,05,0.6,0.7,0.8,0.9
Attribute predictiveness  ap 0.1,0.2,0.3,0.4,0.9.6,0.7,0.8,0.9
Labeled proportion Ip 0%, 10%, 20%, 40%,50%, 60%, 80%

Table 4. Synthetic data parameters. Defaults were chosen based ogeaviecen Cora and Cite-
seer, two commonly studied data sets for CC.

1. Out-of-sample task: Here the test set does not contain or link to any known nodes, as with
Neville and Jensen (2000), Taskar et al. (2002), and Sen and Getoor (2006).

2. Sparse in-sample task:Here some of the test nodes, but only a few, have known labels
(we use 10%). We focus particularly on this task, because some researchers argue that it
is the most realistic scenario, since often networks are large, and acquiring known labels is
expensive (Bilgic and Getoor, 2008). This was the primary scenario considered by the recent
work of McDowell et al. (2007a,b), Bilgic and Getoor (2008), and Gallagher et al. (2008).

3. Dense in-sample taskHere a substantial number of test nodes may have known labels (we
use 50%). This task was the one recently evaluated by Sen et al. (2008).

6.3 Data

We evaluate the hypotheses over both synthetic and real-world data sets, which we describe below.
We use the synthetic data to highlight how different data characteristics affect the relative gain of
cautious behaviors, then the real-world data sets to validate these findings.

6.3.1 SYNTHETIC DATA

We use a synthetic data generator (see Table 4) with two components: a Graph Generator and an
Attribute Generator. The Graph Generator has four inphtgthe number of nodes/instancelsl;

(the number of classesid (the link density), andlh (the degree of homophily). For each link,

dh controls the probability that the linked nodes have the same class label; higher values yield
higher autocorrelation (see Appendix A for details). The final number of links is approximately
N;/(1—1d), and the final link degrees follow a power law distribution, which is common in real
networks (Bollolas et al., 2003). The Graph Generator is identical to that used by Sen et al. (2008);
see that article for more detail.

To make this a practical study, we chose default parameter values that mimic characteristics of
two frequently studied CC data sets, Cora and Citeseer (McDowell et al., 2007a; Neville and Jensen,
2007; Sen et al., 2008). In particul&i;=5 classes and Table 4 shows additional default values. We
choseN;=250 nodes, a smaller value than with Cora/Citeseer, to reduce CC execution time, but
larger values did not change the performance trends.
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The Attribute Generator generates 1Q@)Ninary attributes. Our design for it is motivated by our
observations of common CC data sets. We found that, unlike synthetic models used in prior studies,
different attributes vary in their utility for class prediction. To simulate this, we associate each
attributeh with a particular classy, wherem=h mod N, and vary the strength of each attribute’s
predictiveness based on the valuehofin particular, for node; with classy;, the probability that
vi's hi" attributex;, has value 1 depends upon the clgsas follows:

0.15+(ap—0.15)- gy ifk=hmod N

. Joa if k=(h—1) mod N\t
Ph=1%=0) =1 705 if k= (h+1) mod Nt
0.02 otherwise.

The first line indicates that, whepn (= c) is the class associated with attributdi.e., k =
h mod N), thenP(xn = 1|yi = ¢) ranges from 0.15 foh = 0 to ap (a constant representing the
strength of attribute predictiveness) to= 9. As a result, each of the five classes has two attributes
associated with that class, but some classes have associated attributes that are more useful for pre-
diction. Howeverx, may also be 1 whew is some other class besides an “associated class”; the
next three lines encode this class ambiguity. This ambiguity/noise is based on our observations of
Cora and Citeseer and is similar to the binomial distribution used by Sen et al. (2008).

Finally, we use a parameter for test set generation cil€thbeled proportion), which is the
proportion of test nodes with known labels. We use default valugs=6fo, |p=10%, andp=50%
for the three tasks defined in Section 6.2. Nodes to be labeled are selected uniformly at random
from the test set until the desired valuelpfis reached. In contrast, some real data sets are likely
to exhibit non-uniform clustering of known nodes. We conjecture that such data sets will have a
smaller “effective”lp, since each known node will have, on average, fewer direct connections to
unknown nodes. For instance, a data set Witf10% may behave more like a data set Wjith5%
where the labels are more uniformly distributed. Such effects should be examined in future work.

6.3.2 “REAL-WORLD"” DATA SETS

We consider the following five “real-world” data sets (see Table 5). “Real-world” is a somewhat
subjective term; however, all of the data sets are based on naturally arising networks and have been
used in some form for previous research on relational learning.

1. Cora (McCallum et al., 2000b): A collection of machine learning publications categorized
into seven classes. The relational links are (directed) citations.

2. Citeseer (Lu and Getoor, 2003a):A collection of research publications drawn from Cite-
Seer. The relational links are (directed) citations.

3. WebKB (Craven et al., 1998): A collection of web pages from four computer science de-
partments categorized into six classes (Faculty, Student, Staff, Course, ResearchProject, or
Other). “Other” is problematic because it is too general, representing 74% of the pages. Like
Taskar et al. (2002), we discarded all “Other” pages that did not have at least three outgoing
links, yielding a total of 1541 instances of which 30% are Other. The relational links are the
(directed) hyperlinks among these pages.
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] | Cora CiteSeer WebKB HepTH  Terror |

Characteristics of entire graph

Instances/nodes 2708 3312 1541 2194 645
Attributes (non-relat. feats.) available 1433 3703 100 387 106
Attributes used (max) 100 100 100 100 100
Attributes used (default) 20 20 40 40 2
Link/relation directedness directed directed directed  directed undirected
Type of relational features used in,out in,out in,out,co in,out linksto
Class labels 7 6 6 7 6
Total relational features used 14 12 18 14 6
Links per node 3.9 2.7 5.8(64.6) 8.9 9.8
Autocorrelation 0.88 0.83 0.30(0.53) 0.54 0.16
Characteristics of each test set (on average)

Instances/nodes 400 400 335-469 300 150
Number of folds 5 5 4 5 3
Links per node 2.7 2.7 5.7(61.0) 4.3 12.3
Approx. link density 0.23 0.23 0.64(0.97) 0.53 0.79
Autocorrelation 0.85 0.84 0.38(0.53) 0.64 0.24
Label consistency 0.78 0.75 0.21(0.90) 0.61 0.56
Approximate homophily 0.74 0.70 0.05(0.88) 0.54 0.47

Table 5: Summary of the five real-world data sets ugednd outfeatures compute separate values
based on incoming or outgoing links, whilakstofeatures make no such distinctiotn
features are based on virtual co-citation links; nodes A and B are linked cadiak if
there exists some node C with outgoing links to both A and B. For WebKB, the first statistic
listed is computed ignoring co-links, while the statistic in parentheses is computed using
onlyco-links. Label consistency is the percentage of links connecting nodes with the same
label; Appendix A defines this and approximate homophily. Section 6.9 describes the
“default” number of attributes used.

4. HepTH: A collection of journal articles in the field of theoretical high-energy physics, de-
rived from the Proximity Hep-Th database (http://kdl.cs.umass.edu/data/hepth). The original
data set did not have any single class label, but some pages were classified into topic sub-
types. Among pages with one such subtype, we selected all articles belonging to the six
most common subtypes, yielding 1404 articles. To create a more connected graph, we also
selected all articles with a date after 2001 that linked to at least two of the 1404 pre-selected
articles. There were 790 such articles, which we treated as having a class label of “Other.”
The relational links are the (directed) citations among all 2194 articles.

5. Terror (Zhao et al., 2006): A collection of terrorist incidents, drawn from the Profile in Ter-
ror project (http://profilesinterror.mindswap.org). The incidents are non-uniformly distributed
into six categories: Bombing (44%), WeaponAttack (38%), Kidnapping (14%), Arson (2%),
NBCRAttack (1%), and OtherAttack (1%). The relational links indicate (undirected) geo-
graphical co-location.

These data sets are intended to demonstrate CC performance on a range of data characteristics.
For instance, CC would be expected to be very helpful for Cora and CiteSeer, where autocorrelation
is high, but not very helpful for Terror.
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6.4 CC Algorithms

We evaluate the ten algorithms listed in Table 1, fhasitent Only(CO), a non-relational baseline
that uses only attributes. For each of the four main sections in Table 1, there is one non-cautious
variant (ICA,Gibbsyc, LBRyc, andwvRNcanc) and one or two cautious variants (IEACAkn,
Gibbs,LBP,wvRNy, andwvRNca.c). ThewvRNalgorithms also serve as a collective, relational-
only baseline.

Based on previous work (Neville and Jensen, 2000; McDowell et al., 2007a)C#ubased
algorithms usedh = 10 iterations; more iterations did not improve performance. Gibbs, we
used 1500 iterations, with a random restart every 300 iterations, and ignored the first 100 iterations
after a restart for burn-in. Additional iterations did not improve performa®@ibbsyc converged
in far fewer iterations because it does not sample and is deterministic; we usB@.

ForLBP, we assumed that each parameter was a priori independent and had a zero-mean Gaus-
sian prior with a default uniform prior variance of = 10, which is similar to the values reported
in previous work (e.g., Sen and Getoor 2006; Neville and Jensen 2007). We used MAP estimation
to estimate these parameters based on conjugate graaffemuntrols how tightly the parameters fit
to the training data; Table 2 shows the alternative valueg ebnsidered by PLUL to constrain this
fitting for the relational parameters.

6.5 Classifiers

To account for possible variations in overall CC performance trends due to the effect of the un-
derlying classifier, we tested three local classifiers with each CC algorithm wherever applicable
(this excluded.BP andwvRN). Section 5.5 already described, for each classifier, the key relational
feature whose value is learned by PLUL; we now provide more detail on each classifier and its
application of PLUL.

The first classifier is Naive Bayes (NB). PLUL was used to learior the Dirichlet prior of
each relational feature. The second classifier is Logistic Regression (LR). We used MAP estimation
with Gaussian priors to learn the parameters for LR; PLUL learned an appropriate varfaioce
the prior of each relational feature. The final classifier is k-Nearest Neighbor (kNN); wéustd
When computing similarity, attributes were assigned a weight of 1. PLUL learned the weight
for each relational feature. Weighted similarity was used for voting.

For each classifier, Table 2 shows the specific values considered by PLUL. The “default” value
shown (e.g.o = 1.0 for NB) was used in two ways. First, the default was used as the parameter
value for all attributes. Second, the default was used for a manual setting for the parameter value
for all relational features when PLUL is not being used. When PLUL was used, the learned value
was used instead for the relational features.

ThelCAc algorithm requires a classifier that can ignorissingrelational feature values. KNN
and NB can do this easily: kNN by dropping the feature from the similarity calculation and NB
by skipping the feature in probability computation. For LR, however, dealing with missing values
is a current research topic (e.g., Fung and Wrobel 1989), with typical techniques including mean
value substitution or multiple imputation. However, for CC the situation is less complex than the
more general case, because missing values occur only for the test set, only for relational features,
and typically only when all neighbors of a node have missing labels. Thus, we can learn several
LR classifiers: one that uses all relational features, and one for each combination of features that
may be missing simultaneously (for our data, this is at most 4). Experimentally, we found this
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to perform better than mean value substitution, though the difference was slight because missing
values were rare. These results are consistent with those of Saar-Tsechansky and Provost (2007) on
non-relational data. Section 7.8 discusses this effect in more detail.

6.6 Node Representation

Each node is represented by a set of (non-relational) attributes and relational features. Algorithms
based orLBP andwvRNreason directly with each individual link, and their algorithms thus di-
rectly define the effective relational features used. Approaches bad€randGibbs, however,

use some kind of aggregation function to compute their relational feature values. We first describe
the possible aggregation functions for these features, then separately describe the complete repre-
sentation for the synthetic and real data.

6.6.1 RELATIONAL FEATURESCONSIDERED

We considered three different types of relational features:

e Count: This type represents the number of neighbors that belong to a particular class. For
each nodé there is one such featufgc) per class label c. The value &fc) =Neighborg(c),
which is the number of nodes linked to nadéat have a known or current estimated label of
c. For instance, in step C of Figure fh(P) =1 andf,(S) = 2.

e Proportion: This feature is like “count”, except that the feature value represents the propor-
tion of neighbors that have a particular label, rather than the raw number of such neighbors.
For this featuref;(c) = Neighborg(c) /Neighborgx), whereNeighborg(«) is the number of
nodes linked to nodethat have any current label (known or estimated, butl@#%, exclud-
ing those nodes whose label was setiigsingbecause of low confidence). Nfeighbors(x)
is zero, therf;(c) is set tomissing.For example, if proportion features were being used, then
the feature values for step C of Figure 1 wouldfb@P) =1/3 andf,(S) = 2/3.

e Multiset: Proportion and count features aggregate the labels of a node’s neighborhood to
produce a single numerical value for each possible label. During inference, this aggregate
value is then compared against the mean value from the training set (with NB or LR), or
compared against the aggregate values for nodes in the training set (with KNN). In contrast, a
“multiset” feature uses a single multiset to represent the current labels of a node’s neighbors.
For instance, if multiset features were used, then for step C of Figuie=1,{P, S, S}. This
has the same information content as with count features, but can be exploited differently by
some local classifiers. In particular, during NB inference, each label in the multiset (excluding
missinglabels) is separately used to update the conditional probability that a node has true
labelc. This is the “independent value” approach introduced by Neville et al. (2003b) and
used by Neville and Jensen (2007). However, this approach does not directly apply to LR or
KNN.

6.6.2 SYNTHETIC DATA NODE REPRESENTATION

Each node is represented by ten binary attributes and some relational features. Because represen-
tation choices can affect how well a CC algorithm handles the uncertainty of estimated labels, for
each local classifier-based algorithm we considered count and proportion relational features, as well
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as multiset features when using NB. For each trial, we evaluated the two or three possible types of
relational features with cross-validation (evaluating accuracy on the holdout set), then selected the
feature type with the highest accuracy to use for testing. When PLUL was used, PLUL was also
applied to each feature type; the best performance (on the holdout set) reported by PLUL for each
feature type was then used for this feature selection. Section 7.8 describes which feature types were
chosen most often for each local classifier. Since there are 5 class labels for the synthetic data and
links are undirected, there were 5 relational features when using count or proportion features, and 1
relational feature (whose value is a multiset) when using multiset.

6.6.3 REAL-WORLD DATA NODE REPRESENTATION

For all five data sets we used binary attributes that indicated the presence or absence of a particular
word. For WebKB, these words were from the body of each HTML page; we selected the 100
most frequent such words, which was all that was available in our version of the data set. For
symmetry, and because adding more words had a small impact on performance, we likewise set
up the remaining data sets to select 100 words as attributes. For Cora and CiteSeer, these words
were taken from the body of the publications; as with previous work (McDowell et al., 2007a) we
selected the 100 words with the highest information gain in the training set to use. For Terror, the
words come from hand-written descriptions of each incident provided with the data set; we selected
the first 100 of the 106 available attributes. For HepTH, we selected, based on information gain, the
100 highest-scoring words from the article title or the name of the corresponding journal.

For relational features, we again considered the proportion, multiset, and count features, and
selected the best feature type using cross-validation as described above. All of the data sets except
Terror had directed links. For these data sets, we computed separate relational feature values based
on incoming and outgoing links. In addition, previous work has shown WebKB to have much
stronger autocorrelation based on co-citation links than on direct links (see Table 5). However,
using such links can sometimes be problematic. Thus, we evaluate two data sets: “WebKB” and
“WebKB+co”. For WebKB, algorithms use in and out links (“direct” links). For WebKB+co,
algorithms use in, out, and co-links, exceptRNuses only co-links, as suggested by Macskassy
and Provost (2007) (see Section 7.6).

6.7 Training/Test Splits Generation

For the synthetic data, we generate training, holdout, and test graphs that are disjoint. Likewise, for
WebKB, the data was already divided into four splits (one for each department) that can be used for
cross-validation.

For the other real data sets, we must manually construct training and test splits from the original
graph. Sen et al. (2008) suggest a technique based on snowball sampling that involves picking
a random starting node and iteratively growing a split around that node, where the class of the
next node to be selected is sampled from the overall class distribution. However, we found that
low graph connectivity often prevented the algorithm from producing a final subgraph whose class
distribution resembled the whole graph’s. Instead, we created the following techsinileyity-
driven snowball sampling: given the whole graghpick a random starting node and add it to the
split G1. At each step, consider thfi@ntier F of G; (all those nodes not iG; that link to some node
in G1). Among all labelsc that exist inF, select the class label such that adding some node of
labelc’ to G; would maximize the similarity (inverse Euclidean distance) of the class distributions
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of G; andG. Given thisc/, randomly select some nodefnof classc’ and add it toG;. Repeat this
random selection and insertion ur@j is of the desired size.

We run this algorithm in parallel fdXs different subgraphs, usings different seeds, and permit
each node to be inserted into only one subgraph. This resuls disjoint splits that have similar
class distributions and that can be used\effold cross validation. We s&is= 5 for Cora, Citeseer,
and HepTH, and\Ns = 3 for the smaller Terror.

Table 5 shows some of the characteristics of the generated test sets vs. the original, complete
graphs. In general, the autocorrelation and number of links per node are similar, indicating that the
sampling procedure did not dramatically change the average characteristics of the graph. While the
splitting procedure effectively removes links, the average degree of the test sets may still be greater
than with the original graph if high-degree subsets of the original are selected.

6.8 Test Procedure

We first consider the synthetic data. For each control condition (i.e., data generated with a combina-
tion of dh, ap, Id, andlp values, see Table 4) we ran 25 random trials. For each trial, we generated
training, holdout, and test data sets of 250 nodes each. All training is performed on the fully la-
beled training set. The holdout set, when not used for PLUL, was merged with the training set. We
measured classification accuracy on the test set, excluding all nodes with “known” labels.

For the real-world data sets, each experiment involves using all of the relational features shown
in Table 5 and a fixed number of attributesaJNWe varyNa from 2 to 100 (recall that for all data
sets 100 attributes were selected for experimentation). For each setfifagwé performNs-fold
cross-validation, wherlBsis 3, 4, or 5, depending on the data set. Each one of these 3 to 5 trials is
associated with one subgraph (the test set), and the remaining 2-4 subgraphs comprise the training
set. We then apply PLUL by training on half of the training set and using the other half as the
holdout set. After PLUL selects the best parameter setting, we re-train on the whole training set and
evaluate accuracy on the test set. If PLUL is not used, training likewise uses the whole training set.

We report results with accuracy in order to ease comprehension of the results and to facilitate
comparison with some of the most relevant related work (e.g., Sen et al., 2008; Macskassy and
Provost, 2007). Results with area under the ROC curve (AUC) for the majority class demonstrated
similar trends.

6.9 Statistical Analysis

We conducted two distinct types of analysis. First, to compare algorithms for a single control
condition, we used a one-tailed paired t-test accepted at the 95% confidence level. For every such
test each “test point” is the accuracy over a single trial’'s test graph. For example, for the synthetic
data there are 25 trials for each control condition, and thus a single t-test compares 25 pairs of
accuracies (e.gICAc vs.ICA). In all cases the test graphs used by these t-tests are disjoint, for
both the synthetic and the real data.

Second, we performed linear regression slope tests. In particular, for hypotheses H1-H4, we
compared two algorithms (e.dGAc vs.ICA) for each independent variabte(e.g.,ld) as follows:
For each trial, we computed the difference in the algorithms’ classification accuracies (e.g., for the
synthetic data, 225 such differences for 25 trials and 9 valule§.0fVe performed linear regression
(Y = a+bX), where the accuracy difference is the dependent varilaied X is the independent
variable (e.g.ld). The estimated value of slogge when non-zero, indicates an increasing (+)
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or decreasing (—) trend. Regression produces/alue associated with the slope that indicates the
significance level for hypothesis testing; we accept when0.05. For hypothesis H5, the equations
are the same but we compare a single CC algorithm with and without PLUL.

For the synthetic data, the analysis is straight-forward and we use the data generation parameters
dh,ap, d, andlp as the independent variable for regression. Analysis for the real data sets requires
more explanation. For instance, each computed subgraph of a data set has similar autocorrelation,
so regression for H1 (where autocorrelation is ¥healue) cannot be performed on a single data
set. Instead, we combine the trials of all the real data sets into one analysis, where the indepen-
dent variable is the measured autocorrelation of the corresponding data set (we include WebKB,
but exclude WebKB+co because it's not clear how to compute its autocorrelation with direct links
combined with co-citation links). In addition, our results show that when attribute predictiveness
is high, there is less need for caution. Thus, to prevent any interactions between autocorrelation
and caution from being obscured by high attribute predictiveness, we use fewer than 100 attributes
for these experiments. In particular, for each data set we evaluated the b&seligorithm with
varying numbers of attributesa, and selected the number that yields an average accuracy closest
to 50%. Table 5 shows the resulting default number of attributes for each data set.

For H2 (attribute predictiveness), we can directly vary the number of attributes, so we can
perform regression for each data set separately. However, attribute predictiveness is typically not a
linear function of the number of attributes. Thus, for H2 we perform regression where the dependent
variable is the accuracy &fO for each trial (as a surrogate for attribute predictiveness).

We do not directly evaluate H3 for the real data sets (see Section 7).

For H4 and H5 (varying labeled proportion), we directly vizyso we can compute separate
results for each data set. Moreovigrjs suitable for direct use as the dependent variable. As with
H1, we use the default number of attributes for each data set in order to avoid having high attribute
predictiveness obscure the interaction of caution landVe omit nonsensical points (e.gvwRN
whenlp=0%) from all of the analyses.

Finally, for each hypothesis we also perfornpaoled analysis. For the synthetic data, this
involves pooling the results of all the cautious CC algorithms, then performing the slope regression
test. For the real-world data, we pool the results across both the CC algorithms and each of the real
data sets. In addition, to account for differences in the data sets, we perform a multiple regression
analysis that includes autocorrelation as one of the input variables (except for H1). In particular, we
fit the data to the lin&f = a+ by X1 + boX,, whereX; is the variable in question (e.dp for H4 or
H5) andX; is the autocorrelation of the data set. T{eterm factors out differences due only to
autocorrelation, thus making the other trends more clear. The p-value corresponbing tbhen
used for hypothesis testing.

6.10 Implementation Validation

To validate the implementation of our algorithms, we replicated three different synthetic data gen-
erators: those used by Sen and Getoor (2006), Neville and Jensen (2007), and Sen et al. (2008).
We then replicated some of the experiments from these papers. While several of our CC algorithm
variants were not evaluated in any of these earlier papers, we were able to compare rekiits for
Gibbs, and_BP, with the LR and NB classifiers as appropriate, and found very consistent results.
Section 8.4 discusses one exception.
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LBP is the most challenging algorithm to implement and to get to converge. To deal with
such problems, Sen et al. (2008) seedl@&iP’s learning process with weights learned fréGA.
Alternatively, we found that seeding with values estimated from empirical counts over the data,
combined with limiting the maximum step size of the search to prevent oscillation, worked well.
With these enhancementsBP achieved equivalent accuracy to that reported by Sen and Getoor
(2006), and, when PLUL was applied, significantly improved it for the cases of high homophily
and link density (wher&BP’s accuracy had been very poor). In contrast, we foundLtB&tcould
replicate the performance of Sen et al. (2008), but that in this case PLUL had little effect. Section 8.4
explains the data characteristics of that study (effectively lpyjthat led to this result.

7. Evaluation Results

This section presents our experimental results. Section 7.1 presents a summary of the results, Sec-
tion 7.2 explains how we present the detailed results, and subsequent sections discuss these detailed
results for each hypothesis. We focus on the sparse in-sample task, atcept a hypothesis if it

is confirmed, for thép=10% case, by the pooled analysis on both the synthetic data and the real-
world data. Hypotheses H4-H5 involve varyifigg here we accept the hypothesis if confirmed on

both the synthetic and real data.

When a local classifier is needed, all results below use NB by default. We found that NB’s
performance was better or equivalent to that of LR and kNN in almost every case (see Section 8.4),
for both the synthetic and real data sets, and that using LR or KNN led to very similar performance
trends. Below we mention some of the results for LR and kKNN; see the online appendix for more
detail. In addition, PLUL is used everywhere unless otherwise specified; see analysis and motivation
in Section 7.7.

7.1 Summary of Results

Tables 6-8 summarize our overall results for hypotheses H1-H5. Each table presents results for the
synthetic data on the left and (where applicable) for the real data sets on the right. Each reported
value represents the estimated slope of the line measuring the difference between a cautious and a
non-cautious CC algorithm as the corresponding x-parameter (e.g., autocorrelation) is varied (see
Section 6.9). Only values that were statistically different from zero are reported; otherwise a dash
is shown. Bold values indicate a significant slope that supports the corresponding hypothesis. For
instance, H2 predicted that caution becomes more important as attribute predictlecesses

(a negative slope). Thus, Table 7 shows a minus sign for the expected slope and all significant,
negative slopes are shown in bold. Where possible, we show separate results for the out-of-sample,
sparse in-sample, and dense in-sample tasks (§sm@%, 10%, and 50%). However, to simplify

the table the real-world data results for H2 are shown only ipiti0%; Section 7.4 describes other
results.

The tables show strong support for hypotheses H1, H2, and H4. In particular, we accept H1, H2,
and H4 because the pooled analyses find significant slopes in the expected direction; non-pooled re-
sults also demonstrate consistent support. Thus, the data support the claims that each cautious infer-
ence algorithm outperformsts non-cautious variant by increasing amounts when autocorrelation

7. Technically, the slope results don’t by themselves show that the caalgparsthms “outperform” the non-cautious
algorithms—only that the relative performance of the cautious algorithms is improving in the hypothesized direction.
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D Syn. data Real-world data
& SN e SN Ql©
Fe S £ S L
PR K K K K
H1: auto-correlation
ICAc vs.ICA + | +0.13 +0.13 +0.03 — +0.27 +0.15
ICAkn vs.ICA + | n.a. +0.04 +0.02| n.a. +0.15 +0.13
Gibbsvs. Gibbsyc + | +0.18 +0.15 +0.03 +0.27 +0.25 +0.15
LBPvs.LBRc + | +0.10 +0.08 — — — —
WVRNgL VS.WVRNca+NC + | na. +043 — na. +041 +0.07
WVRNcaic VS.WVRNcaine + | na. +040 — na. +0.67 +0.10
Pooled + | +0.13 +0.21 +0.01 +0.13 +0.30 +0.11

Table 6: Summary of results for hypothesis H1. All values shown repre@sglope that is signifi-
cantly different from zero; values in bold support H1. For H1, at a glyevalue all data
sets (except WebKB+co) are used to compute a single slope value by treating the auto-
correlation of the data set as thevalue. All algorithms used PLUL where applicable.
“n.a.” indicates that the algorithm doesn’t make sendp=2%.

Syn. data Real-world data (b = 10%)
> o
\Q’ X x©
S S $° R LR«
(‘)&\0‘?@ & & & c'}‘@% & & & &
H2: attribute predictiveness
ICAc vs.ICA - | -0.10 -0.25 -0.12/ -0.60 -0.61 -0.29 — — —
ICAkn vs.ICA -| na. -0.06 -0.08/-0.14 — -0.16 — — —
Gibbsvs. Gibbsyc - | -0.09 -0.27 -0.14{ -0.44 -050 — — — —
LBPvs.LBRc - | -0.12 -0.28 -0.05 -0.46 -0.35 — n.c. -0.29 —
Pooled - | -0.10 -0.22 -0.10 -0.23(over all real data and CC algs.)
H3: link density
ICAc vs.ICA - | -0.08 -0.09 -0.03
ICAkn vs.ICA - | n.a. +0.06-0.02
Gibbsvs. Gibbsyc - | -0.09 -0.07 -0.04 (not evaluated)
LBPvs.LBRc - | +0.12 -0.23 -0.04
WVRNy vS.WVRNca+NC - | n.a. -0.18 -0.05
WVRNCA+C VS.WVRNCA+NC - n.a. 0.11-0.03
Pooled - — -0.07 -0.04

Table 7: Summary of results for hypotheses H2 and H3. As before, akvaliown represent a
slope that is significantly different from zero; values in bold support the corresponding
hypothesis. All algorithms used PLUL where applicable. “n.c.” indicates whBredid
not converge.

is higher (H1), attribute predictiveness is lower (H2), and/or the labeled proportion is lower (H4).
In addition, the data show consistent interactions among these factors. In particular, the strength of

However, the raw accuracies do show consistent performance gaitmefcautious algorithms, so in this context the
slope results do show the cautious algorithms outperforming the others by increasing amounts.
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Syn. data Real-world data
Q> o
e 9
& ¢ R &R
¢ SN N
It &

H4: labeled proportion (comparing cautious vs. non-cautiog algorithm)

ICAc vs.ICA - -0.09 | -0.11 -0.14 -0.05 — — —
ICAkn vs.ICA - -0.02 | -0.06 — -0.05-029 — —
Gibbsvs. Gibbsyc - -0.11 -0.14 -0.130.05 0.28 — —
LBPvs.LBRc - -0.05 — — — nc. — —
WVRNg. vsS.WVRNcatNC - -0.28 | -0.37 -0.39 -0.18 — — —
WVRNcaic VS.WVRNcaine - -0.27 | -0.36 -0.32 -0.15 -0.31— +0.28
Pooled - -0.12 | -0.07(over all real data and CC algs.)

H5: labeled proportion (comparing with PLUL vs. without PLUL )

ICA: - -0.02 - = = = = =
ICAkn - -0.01 - — 002 — — —
ICA - — - — — -018 — —
Gibbs - -0.02 — — -0.04 — -0.07 —
LBP - -0.03 — — — nc — —
Pooled - -0.02 | -0.01(over all real data and CC algs.)

Table 8: Summary of results for hypotheses H4 and H5, which both vary Ileéeth proportion
(Ip). As before, all values shown represent a slope that is significantly different from zero;
values in bold support the corresponding hypothesis. For H4, all algorithms used PLUL
where applicable.

the dependence (the magnitude of the slope) generally decreases as the labeled proportion increases
from 10% to 50% (Section 7.4 discusses the differences betlpe®fb and 10% in more detail).

Table 7 shows weaker support for H3 (cautious inference gain increases as link density de-
creases). H3 is supported by most of the synthetic data cases and by the pooled andhy=i®%6r
andlp=50%, but the magnitude of the slopes indicates a weaker effect. Moreover, Section 7.5 exam-
ines these results more closely and proposes that a more appropriate hypothesis would state that the
cautious inference gain is greatest when link density is moderate. This conclusion is also tentatively
supported by a per-node degree analysis of the real data.

Table 8 also shows weaker support for H5. The synthetic data results supported H5 for every
algorithm exceptCA. In addition, for 18 of the 29 possible cases shown for the real data sets,
the computed slope was negative, as predicted by H5. However, the magnitude of these slopes
indicate a weaker effect than with H1, H2, or H4. This decreased magnitude, in conjunction with
the smaller number of trials for the real data, leads to only 4 of those 18 slopes reaching statistical
significance. Nonetheless, by combining trials across algorithms and data sets, the pooled analysis
does find significant (but small) negative slopes for both the synthetic and real data, so we accept
H5. This indicates, as expected, that cautious learning with PLUL is most importantlpviigen
small; Section 7.7 also demonstrates that in this case PLUL can provide substantial performance
gains.
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In addition to these results for each hypothesis, regarding relative performance trends as data
characteristics vary, our results also show statistically significant differences between the cautious
and non-cautious algorithms for at least some of the data conditions. These differences are con-
sistent with the accepted hypotheses. For instance, using the default synthetic data characteristics,
each cautious algorithm showed a significant performance gain over its non-cautious variant, and
the amount of this gain increased as autocorrelation increased, attribute predictiveness decreased,
or labeled proportion decreased.

7.2 Explanation of Results Presentation

In the following sections, we present several figures that compare CC algorithmic performance. In
these figures some controllable parameter is the x-axis and the y-axis is the resultant accuracy for a
given algorithmic variant, averaged over all trials. For instance, Figure 8 plots accuracy vs. the de-
gree of homophily (dh). Each figure compares cautious and non-cautious variants of a particular CC
algorithm:1CA, Gibbs,LBP, orwvRN In addition, for the CC algorithms that use a local classifier
(ICA andGibbs), we often include results for the non-relational algori@@for comparison.

In each section below, we use these results to describe two kinds of analysis. First, we accept
or reject a hypothesis, based on the pooled regression slope test. This analysis confirms or fails to
confirm that the importance of the cautious technigiees changa the expected direction as some
data parameter varies, but does not evalhate importanthe cautious techniques are in improving
performance. To answer the latter question, we report on a second analysis that evaluates, using
paired t-tests, whether the cautious techniques perform significantly better than the non-cautious
alternatives (see Section 6.9).

Each figure has embedded statistical information corresponding to some of these t-tests. In
particular, each non-cautious CC variant is plotted with marker, while cautious CC variants are
plotted with a triangle (where multiple cautious variants exist, two triangle orientations aregased:
andA). For a particular x-value, if the plotted triangle is filled in (solid color), then that cautious
variant had accuracy that was significantly different from the accuvltlye corresponding non-
cautious variant. Hollow triangles instead indicate no significant difference. This notatiomdbes
directly indicate other significance comparisons (e.g., between the two cautious viCidatand
ICAkn); where necessary we describe such results in the text. For example, in Figure 8, the graph in
the third column of the first row (LBRtIp=0%) shows thakBP significantly outperform&BRyc
whendh=0.6 (note the filled triangle). However, fdh=0.5,LBP’s small gain is not statistically
significant (hollow triangle).

Whenlp=0%, ICAkn is equivalent tdCA, so results fotCAkn are not shown. Alsd,BP with

WebKB+co did not converge due to the very high number of links, so results for that case are not
considered (cf., Taskar et al., 2002).

7.3 Result 1: The Relative Gain of Cautious Inference Increases with Increasing
Autocorrelation

Table 6 reports that for H1, for the sparse in-sample task (Ip=10%), the pooled regression analyses
found all significant positive values for the sloBe Thus, we accept H1. In addition, all the non-
pooled analyses found significant positive values. The only exceptiobBRen the real data sets,

which had a positive, non-significant slope=b+0.03).
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Figure 8: Results for the synthetic data as the degree of homophijyvédies. Section 7.2 ex-
plains how filled triangles indicate statistical significance. Some of the gains are small
but consistent, leading to significance, as in the bottom right graph.

Forlp=0% andip=50%, the pooled analyses and most individual analyses show the same posi-
tive slopes (on the real data fil@ Ac vs. ICA atlp=0%, the slope was= +0.11, but the p-value was
just over the significance threshold), as we also found with LR and kKNN. The reduced significance
and magnitude of the slopes whiper50% is also consistent with our expectations, since the overall
importance of caution should decreasdm#creases (see hypotheses H4 and H5). Section 7.4
explains more for th§p=0% case.

Figure 8 shows detailed performance trends for the synthetic data. Here each column presents
results for different variants of a single CC algorithif@4, Gibbs,LBP, andwvRN), and each row
shows results for a different value tif. The x-axis varies homophily (which directly increases
autocorrelation) and the y-axis reports average accuracy.

This figure confirms that when homophily is very low, CC offers little gain, and thus the cau-
tious variants perform equivalently to the non-cautious variants (and, excepviRiY to the non-
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Figure 9: Results for the synthetic data as attribute predictiveap¥sdries.

relational baselin€0). As the strength of relational influence (as well as the potential for incorrect
relational inference) increases with higher homophily, the relative gain of the cautious methods in-
creases substantially (e.g.,|p£10%, gains for NB-based algorithms rise from 4-5%llat0.5 to
9-12% atdh=0.9). The gains from caution are statistically significant in most cases ae0.3.
Results with LR and KNN show very similar trends (see online appendix).

Figure 8 also confirms that §sincreases, the cautious and non-cautious variants perform more
similarly. However, even folp=50%, the cautious variants maintain a significant, though smaller,
advantage. In the other results discussed below, the same trend of very similar performances at
Ip=50% was evident. Likewise, the graphs fpr0% are similar to those fdp=10%. Thus, we
defer most results fdp=0% or 50% to the online appendix.

7.4 Result 2: The Relative Gain of Cautious Inference Increases as Attribute Predictiveness
(ap) Decreases

Table 7 reports that, fdp=10%, the regression analyses found all significant negative slopes (as
expected) for the synthetic data. Likewise, in almost all cases we found significant negative slopes
for the real data sets that have substantial autocorrelation (Cora, Citeseer, HepTH, and WebKB+co),
except for WebKB+co (which had very erratic performance with all the algorithms). We accept H2,
because the pooled analysis found negative slopks=40% for both synthetic and real data; this
result also holds dp=0% and 50%.

Figure 9 shows detailed performance trends for the synthetic data as the x-axisaparkes
instance, folp=10%, when the attribute predictiveness (ap) is 0.6 (the defd@f¢ andGibbs
outperform their non-cautious variants by 6-7%. Howeveg@adecreases to 0.2, label uncertainty
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increases (as evidenced by the dropd@), causing the relative gain of caution to increase to 20%.
LBP shows very similar results.

Results forlp=0% are mostly similar, but with an interesting twist. In this case, the relative
gain of cautious CC increasesasdecreases, as with=10%. However, this gain peaksa=0.2
or 0.3, then declines a&p continues to decrease. When attribute predictiveness is very low, and
there are no known labels to help seed the inferencelfiz=0%), then even the cautious algorithms
have difficulty exploiting relational information, and achieve accuracy only moderately above the
baselineCO. However, even in this case the cautious algorithms maintain some small, statistically
significant advantage over the their non-cautious variants (whigp=21.1 do little better tha@O).
Also, observe thatCAc, Gibbs, and_BP all improve substantially for thip=10% case (compared
to Ip=0%), even though onlyCA: explicitly favors the provided known labels in its inference
process. In this case, using caution appears to be the important performance factor, regardless of
what specific behavior provides that caution.

Figures 10 and 11 provide similar results for the real data setslp#tt0%, where the x-axis
is now the number of attributes used, which correlates with overall attribute predictiveness. In
general, the trends shown are similar to those already observed for the synthetic data. In particular,
the graphs for Cora, Citeseer, HepTH, and WebKB all follow the same pattern: cautious algorithms
outperform non-cautious algorithms more when the number of attributes is low (and cdG#us
outperforms the somewhat cautid@# ). Consistent with H1, the magnitude of these gains varies
with autocorrelation: larger for Cora and Citeseer, smaller for HepTH and WebKB, and non-existent
for Terror (where autocorrelation is very weak).

There are two exceptions to the similarities of these results with the synthetic data. First, for
some data setSibbsand/orLBP perform noticeably worse thd@Ac; we discuss this separately in
Section 8.1. Second, WebKB+co shows fairly erratic performance for all algorithms eégept
In general, the co-citation links used by WebKB+co appear to be very informative (peak accuracy
is much higher than with WebKB), but also potentially misleading. This may be a function of the
WebKB graph structure: Table 5 shows that co-citation links have a very high label consistency
of 0.90 (implying that classifiers will learn a strong relational dependence), but this may be biased
by the presence of some very high degree nodes. During learning the co-citation links may appear
very informative on average, but this strong dependency may lead to mispredictions for low-degree
nodes, leading to the observed erratic behavior.

We now briefly return to the slope analysis of Table 7. For the synthetic data, the negative slopes
for H2 are significant in all cases, but generally largestgefl0%. This behavior is consistent with
our previously discussed analyses of the synthetic data: Wph€%6, the performance of cautious
algorithms for very lowap is diminished, thus producing a smaller slope magnitude than when
Ip=10%. On the other hand, the more general observation that caution is less usefip ighagh
explains why the magnitude of the slopes is lesslg50% than forlp=10%. We found similar
trends for the real-world data sets: while Table 7 shows significant negative slopes for H2 for most
cases (excluding the erratic WebKB+co and the low autocorrelation Terror) \vh&0%, results
(not shown) withlp=0% or 50% indicate slopes of reduced magnitude and/or slopes that do not
reach statistical significance. However, in both cases the pooled analysis still indicates significant
negative slopes for H2 (-0.05 fgp=0% and -0.13 fotp=50%).
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Figure 10: Results for four of the real data sets as the number of attributesed. The x-axis
is not to scale; this is to improve readability and to yield a more linear curve for the
baselineCO algorithm, thus facilitating comparison with Figure 9. Because there are
only 3-5 trials for the real data, high variance sometimes causes substantial gains to not
be statistically significant.

7.5 Result 3: The More Cautious Algorithms Outperform Non-Cautious Algorithms when
Link Density (Id) is Moderate, But Have Mixed Results Whenld is High

For the synthetic data, the results in Table 7 support H3 for all algorithms iph&0%, for most
algorithms wherp=10%, and for only two algorithms whdp=0%. The pooled analysis finds,
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Figure 11: Results for the WebKB data sets as the number of attributes is.vafitedVebKB+co,
LBP did not converge, so results are not shown.

1p=10% 1p=10% 1p=10% 1p=10%
T T T T T T T T T T 1 T T
0.9 r 1 09 1 09r 1 09r
»* 0.8
08 | v)')"_'/ 1 o8t { o8} {07y
§‘ 0.6 vv\'
3 o7 0.7 0.7 051
g ’ ' 0.4
—o— ICA: 0371 —g— WVRNR,
0.6 ICA, 1 06 —— Gibbs 1 06¢ —— LB 1 o2t WVRNcase |
—%— ICA —— Gibbsyc —— LBPy¢ 01l  —%— WVRNicaunc |
05 R R 05 ‘ R ‘ 05 R ‘ ‘ 0 R R
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Link density (Id) Link density (Id) Link density (Id) Link density (Id)

Figure 12: Results for the synthetic data as link densityvaries.

as expected, significant negative slopeslfierl0% andp=50%. However, without corresponding
pooled results for the real data, we cannot accept H3. Moreover, the results we present below will
suggest a revision to H3.

Figure 12 shows the results lkis varied, forlp=10%. Whenld is low to moderate (up to
Id=0.6), the cautious algorithms consistently and significantly outperform their non-cautious vari-
ants. We had hypothesized that this advantage would decrease as link density increased, because
when the link graph is dense, the relational features are relatively unaffected by a few incorrect
labels, and thus using such labels cautiously matter less; Figure 12 generally reflects this trend. In
some cases the non-cautious algorithm even outperforms the cautious algorithm at véaty lRagh
instance, atd=0.9 ICA outperforms the more cautiol€A: (though not significantly). At such
high link density, simply using all available information witBA may work better thanCAc’s
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cautious but partial use of estimated labels—provided that accuracy is high enough that errors are
few. In separate experiments we confirmed that if the attribute predictiveness (and thus accuracy)
was lower|CAc maintained it's advantage ovEZA even wherld was very high.

While these results generally indicate, as expected, that the gain from caution decrdédses as
becomes high, closer examination indicates that this gain from caution peaks not at vietydaw
at moderatdd. In particular, the gain from caution peaks wHdrs 0.2 or 0.3 forlCAc, ICAkn,
or Gibbs, and whetd is 0.6 forwvRMNy. andwvRNca . c. In hindsight, this effect makes sense: as
the number of links decrease, there is less relational influence, and thus less probability of incorrect
relational influence, so caution matters less. Another effect is that with fewer links, there are fewer
opportunities for a cautious algorithm to favor one node’s predictions over another’s.

To further analyze these trends, we turn to the real data. We did not attempt to directly vary the
link density of the real data sets, because it's not clear how to realistically add links to an existing
data set, as would be necessary to create a reasonable range of link densities for experimentation.
However, Table 9 examines our previous results for the real data sets, showing the amount of cau-
tious gain broken down by the link degree of each node. This approach does not directly correlate
to varying the overall link density, so our conclusions are tentative, but it does provide some insight.
We focus primarily oHCAc; trends with other algorithms were similar.

The results support our previous conjectures. In particular, the cautious gain generally decreases
for the highest link degrees, even going negative in some cases. Moreover, in most cases the cautious
gain also decreases for the lowest link degrees, resulting in a peak for the cautious gain (shown in
bold if present) at moderate link degrees. These effects generally hold true for the synthetic data
and for the real data sets that have substantial autocorrelation.

We now return to Figure 12 to consider a few possible exceptions. First,L\Bif) accuracy
decreases with increasitdy is erratic, and is sometimes better WitBRyc than withLBP. This is
not surprising: the short graph cycles caused by hdgiroduces great problems foBP (e.g., Sen
and Getoor, 2006; Sen et al., 2008). Even thd3 accuracies are much better than those achieved
without PLUL (see Section 7.7).

Second, two of the cautious algorithms (I&fandwvRNca.c) performed unexpectedly well,
continuing to significantly outperform the non-cautious variants (and even alternative cautious vari-
ants) at very high link density. Interestingly, these effects also occur with WebKB+co (see Fig-
ures 11 and 14), which has by far the highest link density of the real dat& $etaddition, the
superior performance 0CAk,, at highld remains even when the local classifier is changed to LR
or kNN (see Figure 19 in the online appendix). We suspeci@&¢,’'s advantage arises because it
both achieves a better starting point th@w\ (by favoring known labels in its first iteration) and ex-
ploits more information thatCAc (by using all estimated labels in subsequent iterations—and when
Id is high using a few erroneous labels doesn’t harm performance)wHeNca-c, its advantage
overwvRMNy, must arise from the key algorithmic difference: sineeRNca.c is a hard-labeling
algorithm, it gives all labeled nodes equal weight in the neighborhood average that determines the
next label for a node. When link density is high, relying on this simple average may be better than
WVRNg, s soft-labeling estimation, which implicitly gives more weight to nodes with more extreme

8. At first, these strong performances seem to conflict with MacskaskPeovost (2007), who generally fimd/RNz .
outperformswvRNcac. However, two-thirds of their data sets are variants of WebKB, but where all “Other”
pages have been removed from the classification task. This change makes the classification problem easier, and thus
may explain the discrepancy. In addition, on the only other data set used in that work and this article (Cora), our
performance trends are very similar.
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] | Degree 1-2  Degree 3-5 Degree 6-10 Degree 11-20

Synthetic data, using NB+CAc

Ip=0% 5.5% 8.2% 13.8% 8.2%
Ip=10% 5.2% 9.7% 8.6% 10.6%
Ip=50% 2.2% 4.6 % 8.9% 7.3%
Average 4.3% 75% 10.4% 8.7%
Synthetic data, using NB+Gbbs

Ip=0% 8.5% 13.6 % 18.6% 15.4%
Ip=10% 6.3% 9.7% 12.7% 10.6%
Ip=50% 2.5% 3.6% 7.4% 5.3%
Average 5.7% 9.0% 12.9% 10.5%
Real data with substantial autocorrelation, using NB+CAc

Cora 7.9% 10.9% 10.5% -4.8%
Citeseer 15.8% 20.5% 14.6% -8.3%
WebKB+co 8.3% 9.8% 12.8% 10.0%
HepTH 1.2% -4.3% 3.3% 4.0%
Average 8.3% 9.2% 10.3% 0.2%
Other real data sets, using NB+CAc

WebKB 5.8% 1.5% -4.8% -6.0%
Terror 2.4% -5.7% 0.0% 0.0%

Table 9: Per-node degree results showing the amount of gain from c@l@ida vs. ICA or Gibbs
vs. Gibbgyc). Each value indicates the average accuracy gain from caution for all nodes
in the test set within the given link degree range (nodes with degree greater than 20 were
rare, and ignored for simplicity). Within each row, a value is in bold if it represents a clear
peak, with monotonically decreasing accuracies to both the left and right of that value.
The synthetic data used the default settings. The real data sets used the default number of
attributes andp=10%.

estimated distributions. In both cases, however, extenlding even more extreme values (e.g.,
Id=0.95) does confirm the overall trend of the amount of cautious gain decreasing &t.high

As expected, we found that these performance differences disappeared when many known labels
were provided. In particular, at high link density alpgt50%, there were only small differences
betweenlCAc, ICAkn, andICA, or betweewvRNg, WRNcac, andwvRNcane. In addition,
when PLUL was used, evdiBP andLBR\c performed on par withCAc andGibbswhenlp=50%,
despite the challenges bBP with highld.

Overall, our results suggest that a more appropriate rendering of H3 should indicatieethat
relative gain from caution will peak at some moderate valulel oivith the precise value depending
on the CC algorithm and the other data conditions. We leave confirmation of this revised hypothesis
to future work.

7.6 Result 4: The Relative Gain of Cautious Inference Increases as the Labeled Proportion
(Ip) Decreases

Table 8 reports that, dp varies, the regression analyses found all significant negative slopes (as
expected) for the synthetic data. Likewise, in almost all cases we found significant negative slopes
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Figure 13: Results for the synthetic data as the labeled propohtipwaries.

for the real data sets with substantial autocorrelation (all except Terror and WebKB). We accept H4,
because the pooled analyses find all negative, significant slopes.

For the real data, the exceptions to H4'’s stated trend were primarily WebKB+co, which had
very erratic performance with all the algorithms, and WebKB, where none of the slopes attained
statistical significance. In additiobBP had highly variable behavior so that only for Citeseer did
the slope approach statistical significanpe=(.053, just over the threshold).

Figure 13, for the synthetic data, shows the performance of the cautious and non-cautious algo-
rithms converging ap increases. The cautious algorithms maintain a significant advantage until
Ip=80%. Observe thatlCAkn's curve lies between that of the more cautidG#c and the non-
cautiousICA, while wRNgy. andwvRNca.c obtain the same results with their two different ap-
proaches to caution.

Figure 14 shows results for the real data set$pas varied. This figure show results only
for wwRN since results were previously presented for the other algorithms for varying numbers of
attributes, and thip graphs don'’t add additional insight for those algorithms.

The results in Figure 14 mirror those of the synthetic data, with a few exceptions. First,
WVRNca-c does poorly on Terror, perhaps because of the low autocorrelation. Second, with We-
bKB+co,WwvRNca.c outperformsvwRNy. whenlp is low, though the gains are not quite significant;
this effect was discussed in Section 7.5. Finally, the accurasyBiNfor WebKB goesdownwith
increasingp. WebKB with just direct links has some autocorrelation but very low label consistency
(see Table 5), because each node tends to link in certain patterns to nodesdiffineat label
from itself (cf., Macskassy and Provost, 2007). Algorithms basedwdRNassume homophily, not
such more complex forms of autocorrelation. Consequently, incregsiogly serves to reduce
accuracy below the majority class baseline. RunmingNwith only co-citation links, as done for
WebKB+co, works much better.

7.7 Result 5: The Relative Gain of Cautious Learning With PLUL Increases as the Labeled
Proportion (Ip) Decreases

The previous results compared cautious vs. non-cautious variants of a particular CC algorithm, in
all cases using PLUL. We now justify the use of PLUL and examine its impact.

The bottom of Table 8 shows the regression slope results for H5, where the x-axis varies the
labeled proportion (Ip), and each table row compares a single CC algorithmic variant when using
PLUL vs. not using PLUL. As expected, the slope analysis found all significant negative slopes for
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Figure 14: Results for variants eivRN on the real data sets, fsis varied. For the first WebKB
results wwvRNusesonly co-citation links (unlike previous results with other algorithms,
where WebKB+co used direct links and co-links together; see Section 6.6.3). Recall
that filled triangles indicate statistical significance, but only for comparing the cautious
variant (herewvRNy. or WRNca . c) vs. the non-cautious variant (WVRN: nC)-

the synthetic data (with one exception where the p-value was close to the threshold), although the
magnitude of the slopes suggests a weak trend. For the real data sets, while 18 of the 29 possible
slopes were in the expected direction, only 4 of these slopes were statistically significant (recall that

the real data sets have available only 3-5 trials, making significance harder to achieve). However,

pooling the results across the data sets and algorithms yields a significant negative slope for both
the synthetic and real data, so we accept H5.

Thus, while the effect (akp varies) is smaller than with previous hypotheses, H5 indicates the
PLUL provides the most gain whdp is small. To measure the magnitude of this gain, Table 10
shows the impact of PLUL whelp=0%. Each row shows the results for a different collective
algorithm. Results are given for each algorithm both with and without PLUL, along with the overall
gain from PLUL. Because PLUL interacts closely with the local classifier, we show results here for
NB, LR, and kNN for the CC algorithms that use a local classi@&.andwvRNare unaffected by
PLUL, and thus are not shown.

In general, we found that PLUL improved performance, sometimes substantially, but the data
regions where such substantial gains occur vary by classifier and/or CC algorithm. For instance,
Column A of Table 10 shows results for the default synthetic data settings. Here, PLUL improves
performance for almost all algorithms. In particular, the gains range from -0.3% to 10.8%, with an
average of 4.0%, and are significantin 9 of the 14 cases. Column B shows results where the attribute
predictiveness is 0.3 (instead of the default 0.6). In this case, the gains due to PLUL are almost
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A.) Default settings | B.) Low attr. predictiveness C.) High link density
With PLUL? | PLUL | With PLUL? PLUL With PLUL? | PLUL

Yes No Gain | Yes No Gain Yes No Gain
Using the NB local classifier
ICAC 789 77.8 1.1 | 582 525 5.7 80.6 72.0 8.6
ICA 723 72.6 -0.3 | 47.7 46.8 0.9 77.0 75.4 1.6
Gibbs 81.8 81.5 0.3 | 606 559 47 80.8 79.2 1.6
Gibbsy | 71.8 71.1 0.7 | 46.7 46.0 0.7 76.4 74.2 2.2

Using the LR local classifier
ICA: 786 74.1 4.5 56.8 43.2 13.6 829 739 9.0

ICA 70.8 68.5 2.3 48,5 444 4.1 708 725 -1.7
Gibbs 76.5 729 3.6 523 50.8 15 776 77.8 -0.2
Gibbgyc | 70.3 65.3 5.0 48.4 43.2 52 714 713 0.1

Using the kNN local classifier
ICAC 74.1 69.0 51 51.4 39.2 12.2 785 654 13.1

ICA 71.7 64.2 7.5 484 41.0 7.4 752 747 0.5
Gibbs 73.9 70.0 39 54.4 48.1 6.3 80.3 79.7 0.6
Gibbgyc | 71.7 61.3 104 | 47.7 38.9 8.8 75.0 74.0 1.0
Using LBP

LBP 778 76.4 14 | 557 279 27.8 69.7 215 48.2
LBR\c 739 631 10.8 | 455 244 21.1 543 31.2 23.1

Table 10: Impact of PLUL on accuracy with the synthetic data, for CC algostivhere PLUL
applies, atp=0%. Gains in bold are statisticaly significant.

all larger, ranging from 0.7% to 27.8% (average of 8.6%), and are significant in 11 of 14 cases.
These results are consistent with H2: when attributes are less predictive of the class label, cautious
techniques, including PLUL, become more important. Finally, column C shows results where the
link density is now 0.7 (instead of the default 0.2); here the gains due to PLUL are more varied.
ForICAc, PLUL remains important and matters even more than with the default data settings. We
conjecture that this is because with so many links, relational influence can spread very quickly in
the graph, and thus the PLUL process is very important to ensurint@Agts confidence measure
selects the most reliable predictions during the first few iterations. Indeed, wheimstead set

to 10% (thus providing more certain estimates for the early iterations), PLUL became much less
important forICAc. LBP has known issues with high link density, but PLUL helps substantially to
ameliorate them. For the other algorithms, the increased link density leads to PLUL having a minor
impact, consistent with H3.

Table 11 shows similar results for the real data sets, where results for all six data sets have
been pooled together. Since we cannot directly vary link density, we instead show results with two
conditions. On the left is the “fewer attributes” case; here each data set uses its default number
of attributes, as explained in Section 6.9. On the right is the case where each data set uses 100
attributes.

Compared to results with the synthetic data, Table 11 shows less evidence for the effectiveness
of PLUL with the real data sets. While all algorithms show a gain from using PLUL, only about
half of the gains are statistically significant. To explain, consider that PLUL works best when the
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Fewer attributes(default) More attributes(100)
With PLUL? PLUL With PLUL? | PLUL
Yes No Gain Yes No Gain
ICAC 56.8 56.1 0.7 68.6 68.1 0.5
ICA 545 52.3 2.2 65.7 64.9 0.8
Gibbs 53,5 50.1 3.4 67.0 66.1 0.9
Gibbsyc | 55.5 53.0 2.5 66.5 65.6 09
LBP 499 443 5.6 65.2 584 6.8
LBR\c 46.0 42.1 3.9 635 564 71

Table 11: Accuracy results showing the impact of using PLUL with the raal dgach value shows
results pooled over the six real data setdpa0%, using NB where applicable. Gains in
bold are statistically significant.

holdout set used for learning is most similar to the test set. With the synthetic data, such similarity
is likely, because the two graphs are generated from the same distribution. However, with the real
data, splitting an arbitrary graph into multiple subgraphs, even while seeking to maintain similar
class distributions, may nonetheless produce subgraphs with important differences (e.g., in auto-
correlation), leading to sub-optimal parameter choices by PLUL. Future work is needed to explore
these issues.

Nonetheless, the evidence suggests that in most cases for the real and synthetic data PLUL
improves performance. Moreover, for every algorithm there was some type of data for which not
using PLUL led to very poor performance. Thus, applying PLUL in all of our other experiments
seemed advisable for maximizing performance and for ensuring the most equitable comparisons.

7.8 Choice of Relational Feature Types

Section 6.6 described how each trial selected a type of relational feature to use. For completeness,
Table 12 summarizes how often each type of feature was chosen. In general, the best feature type (as
chosen by cross-validation) varied based on the local classifier used and the data conditions. How-
ever, Table 12 shows that for NB, multiset features were dominant, especially for the more cautious
algorithms (chosen 76-96% of the time 1@Ac andGibbs). With kNN, proportion features were
dominant, while with LR count features were chosen most often but proportion features were also
fairly common, especially with higll. These results suggest that an analyst should most likely use
multiset with NB, use proportion with KNN, and consider the data conditions to select a feature type
for LR.

The superiority of multiset features, when they were applicable, is interesting because they are
“cautious” features that simply ignore nodes with no known or predicted label (see Section 6.6.1).
Likewise, Section 6.5 reported that LR witBA: performed best when missing feature values
were ignored (by using a separate classifier trained without the missing features). These results
are consistent with Saar-Tsechansky and Provost (2007), who found (for non-relational data) this
“reduced-feature model” approach to be superior to commonly used approaches based on imputa-
tion. For a non-relational setting, their results thus demonstrate the superiority of a more “cautious”
approach to handling missing values during testing. For relational domains, we could imagine tak-
ing this idea of ignoring missing/estimated values even further, e.g., using a classifier that ignored
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A ICAc B.)ICA C.) Gibbs
Mult. Count Prop.| Mult. Count Prop.| Mult. Count Prop.
Synthetic data, using the NB local classifier

Default 96% 0% 4% | 72% 0% 28% | 100% 0% 0%
Low ap 88% 0% 12% | 20% 4% 76% | 92% 0% 8%
HighId 48% 0% 52% | 80% 0% 20% | 96% 0% 4%

Average 7% 0% 23% | 57% 1% 41% | 96% 0% 4%
Synthetic data, using the LR local classifier

Default n.a. 92% 8% n.a. 80% 20% n.a. 80% 20%
Low ap n.a. 52% 48% | n.a. 60% 40% n.a. 68% 32%
HighId n.a. 80% 20% | n.a. 52% 48% n.a. 48% 52%
Average n.a. 75% 25% | n.a. 64% 36% n.a. 65% 35%
Synthetic data, using the kNN local classifier

Default n.a. 0% 100%| n.a. 0% 100%| n.a. 0% 100%
Low ap n.a. 0% 100%| n.a. 12% 88% n.a. 0% 100%
HighId n.a. 0% 100%| n.a. 0% 100%| n.a. 0% 100%
Average n.a. 0% 100%| n.a. 4% 96% n.a. 0% 100%
Real data, using the NB local classifier

Cora 975% 25% 0.0%| 70.0% 17.5% 12.5% 100.0% 0.0% 0.0%

Citeseer 925% 25% 5.0%| 57.5% 32.5% 10.0% 100.0% 0.0%  0.0%
WebKB+co | 84.4% 0.0% 15.6% 65.6% 34.4% 0.0%| 71.9% 12.5% 15.69
WebKB 53.1% 40.6% 6.3%| 31.3% 56.3% 125% 75.0% 21.9% 3.1%
HepTH 85.0% 125% 2.5%| 62.5% 25.0% 12.5% 70.0% 27.5% 2.5%
Terror 50.0% 8.3% 41.7% 50.0% 25.0% 25.0% 41.7% 16.7% 41.7%
Average 77.1% 11.1% 11.8% 56.1% 31.8% 12.1% 76.4% 13.1% 10.5%

Table 12: The relational feature type (multiset, count, or proportion) chbgecross-validation.
For the synthetic data, results are shown with the default settings, with low attribute
predictiveness (ap=0.3), and with high link density (Id=0.7). For the real data, results are
shown averaged across all the data points shown in Figures 10 and 11.

the estimated label of a linked node but instead directly used its non-relational features. However,
Jensen et al. (2004) demonstrated that such an approach is generally inferior to the approaches we
consider in this article (label-based features with collective inference), because of the much larger
number of model parameters that must be learned for the former case.

7.9 Variants of wwvRN

Most prior research involvingevRN has usedvwwRNg|, the variant suggested as a relational-only
baseline by Macskassy and Provost (2007). However, algorithms bagsedidneed not necessar-

ily be relational-only. For instance, Macskassy (2007) described a technique for adding additional
links to the graph between nodes that appeared similar based on their attributes. Alternatively, we
could imagine, fowvRMNg, initializing each node’s predicted label probabilities based upon the
output of an attribute-only local classifier (instead of using class priors as done in Figure 5). Unfor-
tunately, this idea does not work well for a “soft” algorithm sucmafkNg,, because after iterating

many times the current state is almost completely determined by the known labels, independent

2823



09 r
08 r
0.7

McDOWELL, GUPTA AND AHA

1p=10%

0.6 | F=FT—F

05 r
04 -
0.3 -
0.2 -
0.1 r

09 r
0.8 r
0.7

06 [ T )

05 r
0.4 -
0.3 -
0.2 r
0.1r

0 . . . .
0 02 04 06 08

09 r
0.8
0.7
06
05 r
04 -

Degree of homophily (dh)

1p=0%

1

0 . . . .
0 02 04 06 08

Degree of homophily (dh)

1p=10%

1

03 r I

02 r
0.1 r

09 r
08 r
0.7
0.6
05 r
04 r
03 r
0.2 -
0.1 r

09
08 |
07t
06 ./
05

04
03t
02t
01t

0 02 04 06 08
Attribute predictiveness (ap)

1

0O 02 04 06 08
Attribute predictiveness (ap)

1

Ip=0%

1p=10%

0 . . . .
0 02 04 06 08

Figure 15: Results for the synthetic data whexkN;ceqiS added for comparison. Because of the
multiple possible comparisons, filled triangles are not used here to indicate statistical

Link density (Id)

significance.

of the starting state (Macskassy and Provost, 2005). While in principle this problem could be ad-
dressed via learning an appropriate decay paramet@d stopping point, this forfeits much of the

simplicity of wwRN

In contrast tovvRNg, with a hard-labeling algorithm such asRNca ¢, the initial conditions
do matter. In particular, we evaluateadtRNeeg an algorithm that behaves just like/RNca.c, ex-
cept that each node’s predicted label is initialized to the most likely label predicted by an attribute-
only NB classifier. Non-relational information thus “seeds” the inference process but is then not
explicitly used again. To the best of our knowledge, this algorithm has not been previously consid-

ered for CC.

Figure 15 shows a variety of results for the synthetic data; results with the real data showed
similar trends. OverallWwvRNgeqoutperformswvRNg (especially wherp is low), which is to be
expected sinC&VRNgeqUses more informationwvRNeeggenerally underperformiCAc, which
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is also to be expected sind€Ac: both uses predicted labels cautiously (whileRNeeqtreats all
predictions equally) and continues to use both attribute and relational information after the first iter-
ation. The differences wittCA¢ are largest whedhis low (wherewvRNs homophily assumption

is violated) or when attribute predictiveness is high (sweRNeequses the attributes only at ini-
tialization). HowevenvvRNgeqoutperforms all of the other shown algorithms when link density is
high. This case is analogous to the results WithAx , from Section 7.5: if accuracy and link density

are high (and homophily is present), then caution with relational information may not be necessary,
and this case shows that continuing to use non-relational information after initialization may also
not be necessary. Overall, the results indicate WheRN¢eqis not likely to be a strong contender

as a general purpose CC algorithm, but they do demonstrate an effective way to add non-relational
information towvRNbased algorithms.

7.10 Impact of the Default Values for Synthetic Data Generation

The synthetic data evaluated above was generated with the default parameters described in Table 4.
Conceivably, our choice of default values could have an important effect on the results. While our
evaluation of multiple real data sets has already helped to validate the synthetic data results, we also
carried out an extensive exploration with other default values. For instance, when \akying
experimented with all combinations ap={0.4, 0.6, 0.8}dh={0.5, 0.7, 0.9}, antp={0%, 10%,

50%}. For tractability, we only evaluated variantsiGfA, since the above results show th@fc
produced the best or nearly the best results for all synthetic and real data sets, and that other cautious
algorithms usually behaved liIKEA:.

The trends were highly consistent with the results we report and agree with our accepted hy-
potheses. For instance, if the defaaftis very high, the results for varyindh showed a much
smaller slope for the relative impact of cautid@Ac vs ICA. The only default value that notice-
ably changed any result was already reported in Section 7.5: apevas small (e.g., 0.4), the
unusual advantage ¢€A over ICA: observed at very highd disappeared. Thus, we believe the
trends in our results are robust over a wide range of data characteristics.

8. Discussion

In this section we compare results with different families of algorithms, examine the overall effec-
tiveness of caution, and use our results to explain the findings of some previous research.

8.1 Comparisons Across Algorithmic Families

Section 7 focused on comparing cautious vs. non-cautious variants within the same algorithmic
family. We now briefly compare across these families. We focus on the algorithms that have been
most frequently used in previous workCA, Gibbs,LBP, andwvRNy. We also include the less
studiedICAc, since our results show that it has very strong performance. We report specific results
for Ip=10%; comparisons were similar flp=0%, while all of the algorithms perform very similarly
whenlp=50%.

WVRNM's performance depends on homophily, link density, gmdn our studywvRNg was
thus competitive with the other CC algorithms when homophily aniyevas high, or when the
attributes were not very predictive. On the other hameRNg, requires that some labels are known
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in the test set, so it is not applicable whpsr0% (the out-of-sample taskivwRNgegWould be an
alternative.

For the synthetic data, the cautious algorith@isc, Gibbs, and.BP had remarkably similar
performance. Among the thre&jbbshad a small but sometimes significant performance advan-
tage. For instance, across the results for varyih@t I[p=10% shown in Figure 8Gibbsoutper-
formedICAc by an average of 1.0% (significantly fdh>0.6) andLBP by an average of 0.7%
(significantly for 0.4<dh<0.7). NeithelCAc nor LBP had consistent, significant gains over the
other, except that botibbsandICA: had substantial, significant gains oxéBP when attribute
strength was very low (gains of 5-8%) or when link density was high (gains of 14-25%). However,
all three algorithms did have substantial, significant gain$GA&, except for whewlhwas very low
or whenld was very high. For instance, across the varidhsevels, GibbsoutperformedCA by
0.9-11.2% (all significantly) except for a loss of 0.1%dat=0.1. Thus, based on the synthetic data
results|CAc, Gibbs, and-BP usually achieve similar accuracies, despite their use of very different
approaches to caution.

On the real data setlCAc, Gibbs, and_BP likewise performed similarly. However, there are
two kinds of differences that should be noted. First, there were a few data sets orLBRiand/or
Gibbsperformed noticeably worse th&#@Ac. In particularGibbshas poor performance on HepTH
and WebKB+co. In both cases, this is likely due to issues of high link density (WebKB has very
many co-citation links; HepTH has fewer links but some nodes have very high degree). High link
density can lead to extreme probabilities, wh&ibbsis known to perform poorly. While this
was not a particular problem with the synthetic data (perhaps because the training and test graphs
were more similar), NB is well known for producing polarized probabilities in some cases. PLUL
does help, for instance, improving performance on HepTH and WebKB+co by an average of 4%
and 15%, respectively, in Figures 10 and 11. Nonetheless, performanc&iblik lags that of
ICAc: or ICA, which are not so influenced by extreme probabilities. We experimented with more
and/or longeiGibbschains but this did not improve performance. However, this is one case where
the LR classifier performed better than NB: it appears to produce less polarized probabilities than
NB, leading to improved performance wi@Gibbs(see Figures 24 and 27 in the online appendix).
Similarly, LBP, which struggles with high link density, also has problems with HepTH (and likely
would have low performance with WebKB+co, had it ever converged) and with Cora. Its difficulty
with Cora is surprising and possibly indicates that the conjugate gradient training did not perform
adequately, despite our attempts (cf., Sen et al., 2008). HoweBBrlid perform well on Citeseer,
which has similar characteristics.

Second, in contrast to the small advantage3idrbson the synthetic data, for the real d&Tac
holds a small advantage. For instance, in Figurd@B¢ outperformsGibbson average by 1% for
Cora and 2.4% for Citeseer, though not significantly. For HepTH and WebKB+co, Wilsbshad
trouble, the gains averaged 5.4% and 21.0%, respectively, and were significant for HepTH when
the number of attributes was smdICAc was also robust: it was the only algorithm to outperform
ICA on average for every real data set considered. Moreover, using results pooled over all six data
sets,ICA: had moderate gains VECA, Gibbs,LBP, andwvRNg,, both at the default number of
attributes (where the gains were significant) and using 100 attributes for each data set. Comparing
to just Gibbsand LBP, ICA: had a pooled gain of 4.9% and 7.8%, respectively, with the default
number of attributes, and 1.8% and 4.5%, respectively, with 100 attributes.
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8.2 Cautious Behavior as a Predictor of Performance

The previous section identified some of the situations in which the algorithms performed similarly
or differently. However, if we exclude the extreme data conditions such as very low attribute predic-
tiveness or high link density, a more remarkable finding emeitipesamount of cautious inference

used by an algorithm strongly predicts its relative performance. This finding is especially inter-
esting because the precise type of cautious inference seems to matter little. On both the synthetic
and the real data sets, in most case8c, Gibbs, and_BP perform alike, while the non-cautious

ICA, Gibbsyc, andLBR¢ also perform similarly to each other (and at lower accuracy levels than
the cautious algorithms). However, when many test labels are knownlff)ighe need for caution
decreases, and the differences between these two groups greatly diminish.

This effect can also be seen in other CC variants. For instandeik_ andwvRNca.c perform
similarly, despite their very different approaches to caution, and they both outperform the non-
cautiouswvRNcane. Likewise, in almost every case the somewhat-cautl@QAx, attained an
accuracy between that of the more cautit®8c and the non-cautiou€A.

Thus, the amount of cautious inference seems to be the biggest factor differentiating those algo-
rithms that use attributes, much more so than whether some kil@lobér Gibbsor LBP is used.
Likewise, when attributes are not used, as with the variants/&N caution also appears to be the
largest factor in predicting relative performance.

8.3 Limitations of Cautious Inference

While our results show that the cautious use of relational information can significantly boost perfor-
mance, adding more caution to an algorithm is not always beneficial. In particular, the most extreme
form of relational caution is to not use any relational information (C®), but that is seldom op-
timal. Instead, an algorithm must seek to cautiously avoid errors from noisy predictions while still
leveraging informative relations.

To illustrate these effects, Figure 16 shows accuracy results for three synthetic data conditions:
low attribute predictiveness (ap=0.3), the default settings, and high link density (Id=0.9). Here the x-
axis indicates the algorithm used, with the amount of relational caution used increasing to the right.
We focus on variants diCA, but add three new algorithms for further analy$GAyg is just like
ICAc, except that it stops after it has “committed” and used the most certain 70% of the predicted
labels (i.e., after the iteration whén=7 in Figure 2).ICAzg andICAy likewise stop after accepting
and using 30% and 0% of the predicted labels, respectively. NotéGhgtis identical tolCAkn
during the very first iteration (when both use only the “known” labels for relational features), but
thatlICAg stops after that iteration, whil€ A, continues for 10 more iterations, using all available
predictions during those iterations.

For the default and low attribute predictiveness data conditions, the trends are very similar:
amongstiCA, ICAk,, andICAc, the most cautioulCAc performs best. Adding more caution to
ICAc, however, consistently decreases performancéCAsy, ICAzy, andICAg use less and less
relational information, until the lowest performance is found with the non-relatio@al These
results make sense: for this data, relational linksinformative, so completely ignoring any (or
all) of them is non-optimal. Indeed, using all of them without any caution (ICA) is much better than
cautiously ignoring all relations3O), but the cautious algorithm that eventually uses all relations
(ICAc) performs best. Note that this property of (eventually) using all available relational informa-
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Figure 16: Accuracy as a function of the amount of relational caution.uBg87o, ICAzg, and
ICAp are (even more cautious) variantsIGfAc that stop iterating before some of the
less certain relational information has been used.

tion is true of all of the more cautious algorithms that we considered in this artiche( Gibbs,
LBP,WwvRMN, andwvRNcac).

The high link density case provides an interesting contrast. Here the general shape of the curve
is similar, but the peak performance is observed WitAx,, not with the more cautiod€Ac. This
effect was already discussed in Section 7.5: if the baseline accuracy is high and there are many
links, simply using all available information after the first iteration is best. Similarly, for situations
where caution is not very important (e.g., whpns high), the curve would show similar results for
ICA, ICAkn, andICAc. Thus, in most cases being cautious with relational information is best, but
the algorithm should eventually use all available information (relational and non-relational), and in
some cases using more caution may be less important or even harmful.

8.4 Explanation of Prior Results

Our investigation enables us to explain the questions from Section 1, among others:

1. Why did Sen et al. (2008) find no consistent difference betwedgibbsand ICA? In con-
trast, Gibbs had worked well in other work, and in this article we found tk&bbs (and
ICAC) often significantly increases accuracy MSA. However, our results and careful study
of Sen et al's methodology explains the discrepancy: to generate the test set, they used a
snowball sampling method that we found produces an effective labeled proportion (Ip) of at
least 0.5—a region where the use of caution has little impact. Also, their study did not vary
attribute predictiveness, which we show is a significant factor in the relative performance of
more cautious CC algorithms.

2. Why did McDowell et al. (2007a) find that ICAc significantly outperforms Gibbs, even
though attribute predictiveness was high, while here we find thaiGibbs performs on
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par or better than ICAc in such cases?o investigate, we re-ran our experiments from our
earlier paper, but with two variations informed by our now-refined understanding of CC. First,
we used PLUL with both the NB and kNN classifiers. Second, we changed the NB classifier
to use multiset relational features (instead of proportion), which use more information and
which Section 7.8 shows is the feature of choice when using NB (it didn’t apply for KNN).
With these enhancemeniSjbbs’s relative performance improved, so th@ac and Gibbs

both significantly outperformelCA, but the results foGibbsandICA¢ did not significantly

differ. Thus, more careful learning and representation choices resolves the discrepancy. This
also suggests that not using PLUL could potentially have an important effect on performance
comparisons. As an additional example, Sen and Getoor (2006) experimented with a wide
range of link densities but did not use a technique like PLUL; our results suggest that using
PLUL could have significantly improved their results witBP for highId.

. Why did Galstyan and Cohen (2007) find that a soft-labeling version oWwwRNfails to
consistently outperform a hard “label propagation” (LP) version? Most authors have ex-
pected that, for relational-only classification, the soft-labeling algorithm that directly reasons
with probabilities (thus exercising cautious inference) should outperform a hard-labeling ver-
sion that only reasons with the single most likely label for each linked node. However, closer
examination of their LP algorithm reveals that it includes elements of caution. In particular,
after each iteration, LP labels a non-known node only if the estimated score for that node is
among thehighestof any such nodes. Thus, in a way similamM®@RNca.c, nodes that are
closest to known nodes are labeled first, and the algorithm effectively favors label information
that was either known or is closer to other known nodes. This cautious behavior enables LP
to be competitive with (and sometimes outperform) the soft-labeling algorithm.

. Why did Sen et al. (2008) find thatiCA and Gibbsperform better with LR than with NB,

while we find the reverse?We replicated the synthetic data of their paper, and reproduced
their results. A key point, however, is that Sen et al. used count relational features for both
NB and LR, while we used cross-validation on a holdout set to select the best relational
feature type (see Section 6.6). This procedure predominantly selected multiset features for
NB (see Section 7.8), which we found in separate experiments to consistently improve NB
performance compared to using count features. Consequently, in our results CC algorithms
that use NB almost always outperformed those that use LR. While not a focus of our work,
such differences can be seen in Table 10. The superior performance of multiset features also
confirms the finding of Neville et al. (2003b).

. When will cautious algorithms outperform their aggressive variants?We found that us-

ing more cautious CC frequently and sometimes dramatically increased accuracy. In gen-
eral, cautious CC performs comparatively well whenever relational inference errors are more
likely. These errors occur more frequently when there is more uncertainty in the estimated
relational feature values (e.g., when the attribute predictiveness is low) or when the effect of
any such uncertainty is magnified (e.g., when autocorrelation is high). In some cases, such as
when the test set links to many known labels (hiigh using a more cautious CC algorithm

may be unnecessary. However, in many cases (and with most previouslp@lgmall or

zero, and thus caution may be important.
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9. Conclusion

Collective classification’s greatest strength—making inferences based on the inferred labels of re-
lated nodes—can also be a significant weakness, since this use of uncertain labels may reduce ac-
curacy when the estimates are incorrect. In this article, we demonstrated that managing this estima-
tion uncertainty through “cautious” algorithmic behavior is essential to achieving maximal, robust
performance. We showed how varying degrees of cautious inference could be manifested in four
different collective inference families, and explained how to use cautious learning with PLUL to
further improve performance. Our experimental results with both synthetic and real-world data sets
showed that cautious algorithms did outperform their non-cautious variants. By exploring a wide
range of data, we identified some data characteristics for which this performance advantage grew
larger. In particular, cautious behavior is especially important when there is a higher probability of
incorrect relational inference—which occurs when autocorrelation is higher, when link density is
moderate, and/or when attribute predictiveness or the labeled proportion is lower. In addition, our
study enabled us to answer several important questions from previous work.

Across a wide range of data, we found that an algorithm’s degree of caution was a significant
predictor of relative performance—in most cases a more important one than the specific collective
inference algorithm used. This reinforces the fundamental importance of cautious behavior for CC.
However, the cautious CC algorithms were not always compardbilebs and (especially) BP
sometimes struggled (e.g., when the data had high link density). In corlttagt,was a very
reliable performer and almost always had maximal or near-maximal performance, especially for the
real-world data. This finding is interesting because this article is the first to comGiéieiin depth.
Moreover,|ICAc is a simple modification t¢€CA, making it much more time-efficient th&ibbsor
LBP. This suggests th#€Ac is a strong contender for general CC tasks, and should be used as a
baseline for future CC performance comparisons.

Regarding cautious learning, we found that PLUL generally increased accuracy, sometimes
substantially. Parameter tuning is known to be important for learning non-relational classifiers.
We show that it can be especially critical for CC due to CC's reliance on uncertain labels during
testing. For example, further results showed that for the synthetic data when link density was high,
Gibbs+NB with a naivex (prior hyperparameter) of 1.0 attained 99% of the accuracy attainable
with any o—if most test labels were known (e.gp=80%). However, wheip=0% this strategy’s
accuracy was just 61% of optimal. Using PLUL to ad@hstead increased accuracy. In addition, our
results in Section 7.7 showed PLUL helping both cautious and non-cautious inference algorithms.
Thus, using PLUL for cautious learning improves performance, and adding cautious inference helps
even more.

Future work is needed to compare the algorithms considered here with alternative methods,
such as Markov Logic Networks (Richardson and Domingos, 2006) and the “ghost edge” approach
of Gallagher et al. (2008), and to compare PLUL to the alternative “stacked models” discussed in
Section 5.5. In addition, further studies to consider the effect of training set size, noise in the known
labels, and link uncertainty would be useful. Finally, techniques are needed to further improve the
performance of cautious inference on data with high link density or other extreme conditions.

2830



CAUTIOUS COLLECTIVE CLASSIFICATION

Acknowledgments

Thanks to Doug Downey, Lise Getoor, David Jensen, and Sofus Macskassy for helpful comments
on this work, to Prithviraj Sen for the Cora and Citeseer data sets, to Jennifer Neville for helpful
discussions and for code that implements LBP, and to Prithviraj Sen and Mustafa Bilgic for clari-
fications on their work. Thanks also to the anonymous reviewers for many helpful comments that
helped to improve this article. Luke McDowell’s funding for this research was partly supported
by the U.S. Naval Academy Cooperative Program for Scientific Interchange, which is a compo-
nent of NRL's General Laboratory Scientific Interchange Program. Portions of this analysis were
conducted using Proximity, an open-source software environment developed by the Knowledge Dis-
covery Laboratory at the University of Massachusetts Amherst (http://kdl.cs.umass.edu/proximity/).
The HepTH data was derived from the Proximity HEP-Th database, which is based on data from the
arXiv archive and the Stanford Linear Accelerator Center SPIRES-HEP database provided for the
2003 KDD Cup competition, with additional preparation performed by the Knowledge Discovery
Lab.

Appendix A. Measuring the Strength of Relational Dependence

Data sets used for CC are often measured for their autocorrelation. Alterndabalyconsistency

is the percentage of links connecting nodes with the same label. A closely related measure is the
degree of homophilgdh) used by Sen et al. (2008). To see the difference, suppose that a data set
has five labels that occur with equal frequency. Sen et al. argue thhtisizero, the target of a link

from a node labeled should be to another node labeld®0% of the time (random chance), not

0% of the time (Sen, 2008). Thus, for a uniform class distribution, the actual probability of a link
connecting two nodeisand j of the same label is defined as:

label consistency: P(y; = yi|(i, j) € E) = dh+ 1’_;”' 4)

To facilitate comparison, we adopt this definition to generate synthetic data with varying levels
of dh. However, for real data sets, we can only directly compute label consistency. Thus, to facili-
tate comparison we also compupproximate homophilfrom the measured label consistency by
assuming a uniform distribution of labels and solvingdbrusing Equation 4.

Appendix B. Information on Additional Results

In Section 7, we omitted some results for alternate local classifiers (LR and kNN) and/or alternate
settings oflp, since they did not noticeably change our reported trends. These results are available
in an online appendix that accompanies this article on the JMLR website.
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